Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Models and observations of the impact of natural hydrocarbons on rural ozone

Abstract

Large quantities of non-methane hydrocarbons (NMHCs) are emitted into the atmosphere from vegetation1,2. A recent inventory by Lamb et al.2 indicates that the emission of natural hydrocarbons is significant compared to that of anthropogenic NMHCs in most regions of the United States. Because of their chemical activity, the natural NMHCs can play important parts in the formation of trace gases, such as ozone (O3), peroxyacetyl nitrate (PAN) and oxygenated secondary hydrocarbons3–5, which contribute to regional-scale air pollution6 and may be harmful to crops and forest7–9. The impact of natural hydrocarbons on the formation of O3 in the atmosphere has been discussed previously4–13. In general, it has been concluded that their impact is small14–16. But lack of data on the ambient concentrations of key photochemical species and an incomplete analysis of the photochemistry has prevented a definitive evaluation of the impact of natural NMHCs on rural O3. Here we report on concentrations of key trace gases measured concurrently at a rural site in the eastern USA during the summer of 1986 and a modelling study conducted to analyse these measurements. This study demonstrates that natural NMHCs can have a significant impact on ozone formation in rural air.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zimmerman, P. R. EPA Rep. No. 904/9-77-028 (US EPA, 1979).

  2. Lamb, B., Guenther, A., Gay, D. & Westberg, H. Atmos. Envir. 21, 1695–1705 (1987).

    Article  CAS  Google Scholar 

  3. Demerjian, K. L., Kerr, J. A. & Calvert, J. G. Adv. envir. Sci. Technol 4, 1–262 (1974).

    CAS  Google Scholar 

  4. Graedel, T. E. Rev. Geophys. Space Phys. 17, 937–946 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Dimitriades, B. J. Air Pollut. Control. Ass. 31, 229–235 (1981).

    Article  CAS  Google Scholar 

  6. Environmental Protection Agency Investigation of Rural Oxidant Levels as related to Urban Hydrocarbon Control Strategies Rep. No. 450/3-75-036 (1975).

  7. Heck, W. W. et al. J. Air Pollut. Control Ass. 34, 729–735 (1984).

    Article  CAS  Google Scholar 

  8. Wang, D., Bormann, F. H. & Karnosky, D. F. Envir. Sci. Technol. 20, 1122–1125 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Skärby, L. & Selldén, G. Ambio 13, 68–72 (1984).

    Google Scholar 

  10. Lonneman, W. A., Seila, R. L. & Bufalini, J. J. Envir. Sci. Technol. 12, 459–463 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Sandberg, J. S., Basso, M. J. & Okin, B. A. Science 200, 1051–1054 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Arnts, R. R. & Meeks, S. A. Atmos. Envir. 15, 1643–1651 (1981).

    Article  CAS  Google Scholar 

  13. Isaksen, I. A., Hov, Ø & Hessvedt, E. Envir. Sci. Technol. 12, 1279–1284 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Lurmann, F. W., Lloyd, A. C. & Nitta, B. Atmos. Envir. 17, 1951–1963 (1983).

    Article  CAS  Google Scholar 

  15. Lurmann, F. W., Nitta, B., Ganesan, K. & Lloyd, A. C. Atmos. Envir. 18, 1133–1143 (1984).

    Article  CAS  Google Scholar 

  16. Altshuller, A. P. Amos. Envir. 17, 2131–2165 (1983).

    CAS  Google Scholar 

  17. Fahey, D. W. et al. J. geophys. Res. 91, 9781–9793 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Vukovich, F. M., Bach, W. D. Jr, Grissman, B. W. & King, W. J. Atmos. Envir. 11, 967–984 (1977).

    Article  CAS  Google Scholar 

  19. Guichert, R. & van Dop, H. Atmos. Envir. 11, 145–155 (1977).

    Article  Google Scholar 

  20. Lamb, B., Westberg, H., Allwine, G. & Quarles, T. J. geophys. Res. 90, 2380–2390 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Sexton, K. & Westberg, H. Atmos. Envir. 18, 1125–1132 (1984).

    Article  CAS  Google Scholar 

  22. Trainer, M. et al. J. geophys. Res. (in the press).

  23. Hov, Ø., Schjoldager, J. & Wathne, B. M. J. geophys. Res. 88, 10679–10688 (1983).

    Article  ADS  CAS  Google Scholar 

  24. National Acid Precipitation Assessment Program Second Annual Acid Deposition Emission Inventory Symposium EPA Rep. No. 600/9-86-010 (1986).

  25. Williams, E. J., Parrish, D. D., Buhr, M. P., Fehsenfeld, F. C. & Fall, R. Eos Trans. AGU 67, 892 (1986).

    Google Scholar 

  26. Jacob, D. J. & Wofsy, S. C. J. geophys. Res. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trainer, M., Williams, E., Parrish, D. et al. Models and observations of the impact of natural hydrocarbons on rural ozone. Nature 329, 705–707 (1987). https://doi.org/10.1038/329705a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329705a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing