Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isolation and characterization of genomic and cDNA clones of human erythropoietin

Abstract

The glycoprotein hormone erythropoietin regulates the level of oxygen in the blood by modulating the number of circulating erythrocytes, and is produced in the kidney1–4 or liver5,6 of adult and the liver7,8 of fetal or neonatal mammals. Neither the precise cell types that produce erythropoietin nor the mechanisms by which the same or different cells measure the circulating oxygen concentration and consequently regulate erythropoietin production (for review see ref. 9) are known. Cells responsive to erythropoietin have been identified in the adult bone marrow10, fetal liver11 or adult spleen12. In cultures of erythropoietic progenitors, erythropoietin stimulates proliferation and differentiation to more mature red blood cells. Detailed molecular studies have been hampered, however, by the impurity and heterogeneity of target cell populations and the difficulty of obtaining significant quantities of the purified hormone. Highly purified erythropoietin may be useful in the treatment of various forms of anaemia, particularly in chronic renal failure13–15. Here we describe the cloning of the human erythropoietin gene and the expression of an erythropoietin cDNA clone in a transient mammalian expression system to yield a secreted product with biological activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sherwood, J. B. & Goldwasser, E. Endocrinology 103, 866–870 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Hammond, D. & Winnick, S. Ann. N.Y. Acad. Sci. 230, 219–227 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Jacobson, L. O., Goldwasser, E. Fried, W. & Pizak, L. F. Trans. Ass. Am. Phys. 10, 305–317 (1957).

    Google Scholar 

  4. Krantz, S. B. & Jacobson, L. O. thesis, Univ. Chicago (1970).

  5. Fried, W. Blood 40, 671–677 (1972).

    CAS  PubMed  Google Scholar 

  6. Naughton, B. A. et al., Science 196, 301–302 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Lucarelli, G. P., Howard, D. & Stohlman, F. Jr J. clin. Invest. 43, 2195–2203 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zanjani, E. D., Poster, J., Burlington, H., Mann, L. I. & Wasserman, L. R. J. Lab. clin. Med. 89, 640–644 (1977).

    CAS  PubMed  Google Scholar 

  9. Fisher, J. Proc. Soc. exp. Biol. Med. 173, 289–305 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Krantz, S. B., Gallfen-Lartiguc, O. & Goldwasser, E. J. biol. Chem. 238, 4085–4090 (1963).

    CAS  PubMed  Google Scholar 

  11. Dunn, C. D., Jarvis, J. H. & Greenman, J. M. Expl Hemat. 3, 65–78 (1975).

    CAS  Google Scholar 

  12. Krystal, G. Expl Hemat. 11, 649–660 (1983).

    CAS  Google Scholar 

  13. Krane, N. Henry Ford Hosp. Med. J. 31, 177–181 (1983).

    CAS  PubMed  Google Scholar 

  14. Anagnostou, A., Barone, J., Vedo, A. & Fried, W. Br. J. Hemat. 37, 85–91 (1977).

    Article  CAS  Google Scholar 

  15. Eschbach, J., Mladenovic, J., Garcia, J., Wahl, P. & Adamson, J. J. clin. Invest. 74, 434–441 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hewick, R. M., Hunkapiller, M. E., Hood, L. E. & Dreyer, W. J. J. biol. Chem. 256, 7990–7997 (1981).

    CAS  PubMed  Google Scholar 

  17. Zanjani, E. D., Ascensao, J. L., McGlave, P. B., Banisadre, M. & Ash, R. C. J. clin. Invest. 67, 1183–1188 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gruber, D. F., Zucali, J. R. & Mirand, E. A. Expl Hemat. 5, 392–398 (1977).

    CAS  Google Scholar 

  19. Congote, L. F. J. Steroid Biochem. 8, 423–428 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Toole, J. J. et al. Nature 312, 342–347 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Goldwasser, E. Blood 58, Suppl. 1, 13 (abstr.) (1981).

    Google Scholar 

  22. Sue, J. M. and Sytkowdki, A. J. Proc. natn. Acad. Sci. U.S.A. 80, 3651–3655 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Yanagawa, S. et al. J. biol. Chem. 259, 2707–2710 (1984).

    CAS  PubMed  Google Scholar 

  24. Gluzman, Y. Cell 23, 175–182 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Wong, G. C. et al. Science (in the press).

  26. Kaufman, Proc. natn. Acad. Sci. U.S.A. (in the press).

  27. Miyake, T., Kung, C. & Goldwasser, E. J. biol. Chem. 252, 5558–5564 (1977).

    CAS  PubMed  Google Scholar 

  28. Sytkowski, A. Biochem. biophys. Res. Commun. 96, 143–149 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Wagh, P. V. & Bahl, O. P. CRC crit. Rev. Biochem. 307–377 (1981).

  30. Murphy, M. & Miyake, T. Acta. Haemal. jap. 46, 1380–1396 (1983).

    CAS  Google Scholar 

  31. Wang, F. F., Kung, C. K.-H. & Goldwasser, E. Fedn Proc. 42, 1872 (abstr.) (1983).

    Google Scholar 

  32. Lowy, P., Keighley, G. & Borsook, H. Nature 185, 102–103 (1960).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. VanLenten, L. & Ashwell, G. J. biol. Chem. 247, 4633–4640 (1972).

    CAS  Google Scholar 

  34. Lee-Huang, S. Proc. natn. Acad. Sci. U.S.A. 81, 2708–2712 (1984).

    Article  ADS  CAS  Google Scholar 

  35. Fyrquist, F., Rosenlof, K., Gronhagen-Riska, C., Hortling, L. & Tikkanen, I. Nature 308, 649–652 (1984).

    Article  ADS  Google Scholar 

  36. Ohkubo, H. et al. Proc. natn. Acad. Sci. U.S.A. 80, 2196–2200 (1983).

    Article  ADS  CAS  Google Scholar 

  37. Horowitz, M., Cepko, C. & Sharp, P. A. J. molec. appl. Genet. 2, 147–149 (1983).

    CAS  Google Scholar 

  38. Bersch, N. & Golde, D. W. in In Vitro Aspects of Erythropoiesis (Murphy, M. J.) 252–253 (Springer, New York, 1978).

    Google Scholar 

  39. Cotes, P. M. & Bangham, D. R. Nature 191, 1065–1068 (1961).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Goldwasser, E. & Gross, M. Meth. Enzym. 37, 109–121 (1975).

    Article  CAS  PubMed  Google Scholar 

  41. Derman, E. et al. Cell 23, 731–739 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Anderson, S. & Kingston, I. B. Proc. natn. Acad. Sci. U.S.A. 80, 6836–6842 (1983).

    ADS  Google Scholar 

  43. Lawn, R. M., Fritsch, E. F., Parker, R. C., Blake, G. & Maniatis, T. Cell 15, 1157–1174 (1978).

    Article  CAS  PubMed  Google Scholar 

  44. Woo, S. L. C. et al. Proc. natn. Acad. Sci. U.S.A. 75, 3688–3691 (1978).

    Article  ADS  CAS  Google Scholar 

  45. Melchior, W. B. & von Hippel, P. H. Proc. natn. Acad. Soc. U.S.A. 70, 298–302 (1973).

    Article  ADS  CAS  Google Scholar 

  46. Orosz, J. M. & Wetmur, J. G. Biopolymers 16, 1183–1199 (1977).

    Article  CAS  PubMed  Google Scholar 

  47. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  48. Benton, W. D. & Davis, R. W. Science 196, 180–182 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, K., Shoemaker, C., Rudersdorf, R. et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313, 806–810 (1985). https://doi.org/10.1038/313806a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313806a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing