Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Empirical approach to estimating the composition of the continental crust

Abstract

The continental crust has ultimately been extracted from the mantle and knowledge of its composition is therefore fundamental to an understanding of the chemical evolution of the Earth. Attempts to model its average chemistry are complicated by marked vertical and lateral chemical and lithological heterogeneity1–3 and by problems of sampling the deeper levels of the crust. We have adopted a different, empirical, approach to try and take account of geophysical and isotopic constraints by considering the major and trace element chemistry of components which are typical of various crustal levels and ages. Our estimate differs from that of the ‘andesitic’ model in being more siliceous and having a more fractionated rare earth element pattern. Its higher Th, U and K contents generate a higher heat production of 0.95 µW m−3 compared with previous estimates of 0.75–0.91 µW m−3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smithson, S. B. & Decker, E. R. Earth planet. Sci. Lett. 22, 215–225 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Smithson, S. B. Geophys. Res. Lett. 9, 749–752 (1978).

    Article  ADS  Google Scholar 

  3. Fountain, D. M. & Salisbury, M. H. Earth planet. Sci. Lett. 56, 263–277 (1981).

    Article  ADS  Google Scholar 

  4. Goldschmidt, V. M. Fortsch. Min. Krist. Petrogr. 17, 112 (1933).

    Google Scholar 

  5. Vinogradov, A. P. Geochemistry 7, 641–664 (1962).

    Google Scholar 

  6. Taylor, S. R. Geochim. cosmochim. Acta 28, 1273–1285 (1964).

    Article  ADS  CAS  Google Scholar 

  7. Ronov, A. B. & Yaroshevski, A. A. in Earth's Crust and Upper Mantle (ed. Hart, P. J.) 37–57 (AGU Monogr. 13, Washington DC, 1969).

    Google Scholar 

  8. Holland, J. G. & Lambert, R. St. J. Geochim. cosmochim. Acta 36, 673–683 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Taylor, S. R. in Island Arcs, Deep Sea Trenches and Back-Arc Basins (eds Talwani, M. & Pitman, W. C.) 325–335 (Maurice Ewing Ser. 1, AGU, Washington DC, 1977).

    Book  Google Scholar 

  10. Taylor, S. R. & McLennan, S. M. Phil. Trans. R. Soc. A301, 381–399 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Jacobsen, S. B. & Wasserburg, G. J. J. geophys. Res. 84, 7411–7427 (1979).

    Article  ADS  CAS  Google Scholar 

  12. DePaolo, D. J. Geochim. cosmochim. Acta 44, 1185–1196 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Zartman, R. E. & Doe, B. R. Tectonophysics 75, 135–162 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Allègre, C. J. Tectonophysics 81, 109–132 (1982).

    Article  ADS  Google Scholar 

  15. Moorbath, S. Chem. Geol. 20, 151–187 (1977).

    Article  ADS  CAS  Google Scholar 

  16. McCulloch, M. T. & Wasserburg, G. J. Science 200, 1003–1011 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Moorbath, S. & Taylor, P. N. in Precambrian Plate Tectonics (ed. Kroner, A.) 491–525 (Elsevier, Amsterdam, 1981).

    Google Scholar 

  18. Dewey, J. F. & Windley, B. F. Phil. Trans. R. Soc. A301, 189–206 (1981).

    Article  ADS  Google Scholar 

  19. McLennan, S. M. & Taylor, S. R. J. Geol. 90, 347–361 (1982).

    Article  ADS  CAS  Google Scholar 

  20. McLennan, S. M. & Taylor, S. R. Nature 306, 169–172 (1983).

    Article  ADS  Google Scholar 

  21. Lachenbruch, A. H. J. geophys. Res. 75, 3291–3300 (1970).

    Article  ADS  Google Scholar 

  22. Heier, K. S. Phil. Trans. R. Soc. A273, 429–442 (1973).

    Article  ADS  Google Scholar 

  23. Haack, U. Earth planet. Sci. Lett. 62, 360–366 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Ewart, A. in Andesites (ed. Thorpe, R. S.) 25–95 (Wiley, London, 1982).

    Google Scholar 

  25. Bailey, J. C. Chem. Geol. 32, 139–154 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Weaver, B. L. & Tarney, J. Earth planet. Sci. Lett. 51, 279–296 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Weaver, B. L. & Tarney, J. Earth planet. Sci. Lett. 55, 171–180 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Weaver, B. L. & Tarney, J. in Andesites (ed. Thorpe, R. S.) 639–661 (Wiley, London, 1982).

    Google Scholar 

  29. Tarney, J. & Windley, B. F. J. geol. Soc. Lond. 134, 153–172 (1977).

    Article  CAS  Google Scholar 

  30. Newton, R. C. in Archaean Geochemistry (eds Windley, B. F. & Naqvi, S. M.) 221–240 (Eisevier, Amsterdam, 1978).

    Book  Google Scholar 

  31. Weaver, B. L. & Tarney, J. Phys. Chem. Earth (in the press).

  32. Weaver, B. L. & Tarney, J. Nature 286, 342–346 (1980).

    Article  ADS  CAS  Google Scholar 

  33. Wood, D. A., Tarney, J. & Weaver, B. L. Tectonophysics 75, 91–112 (1981).

    Article  ADS  CAS  Google Scholar 

  34. Saunders, A. D., Tarney, J. & Weaver, S. D. Earth planet. Sci. Lett. 46, 344–360 (1980).

    Article  ADS  CAS  Google Scholar 

  35. Pearce, J. A. in Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. & Norry, M. J.) 230–249 (Shiva, Orpington, 1983).

    Google Scholar 

  36. Tarney, J., Weaver, B. L. & Windley, B. F. Rev. Brasil. Geoci. 12, 53–59 (1982).

    CAS  Google Scholar 

  37. Moorbath, S., Welke, H. & Gale, N. H. Earth planet. Sci. Lett. 6, 245–256 (1969).

    Article  ADS  CAS  Google Scholar 

  38. Nakamura, N. Geochim. cosmochim. Acta 38, 757–775 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, B., Tarney, J. Empirical approach to estimating the composition of the continental crust. Nature 310, 575–577 (1984). https://doi.org/10.1038/310575a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310575a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing