Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutation rate, genome size and their relation to the rec concept

A Corrigendum to this article was published on 22 January 1976

Abstract

ORGANISMS vary greatly in genome size, that is, in the amount of DNA comprising the haploid genome. Rates of radiation-induced mutation expressed as mutations per locus per rad, also differ widely among organisms, but it is surprising that mutation rates and genome size are correlated1. This correlation is unexpected because proteins are of a similar size in all organisms, implying that structural genes must also be of a similar size. Accordingly, one would expect that, although the overall mutation rate would be proportional to the overall number of genes, the mutation rate per locus would be similar in all organisms or, at least, bear no relation to genome size. Surveying published data, however, Abrahamson et al.1 found a direct correlation between rate of radiation-induced mutation and size of the haploid genome from Escherichia coli to Hordeum vulgare (the ABCW relationship). We wondered whether rates of chemically induced mutation would also be related to genome size, both because of the practical importance of being able to extrapolate to the genetic effect of a chemical on the human population and because the information might help to elucidate the mechanism underlying the ABCW relationship.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Abrahamson, S., Bender, M. A., Conger, A. D., and Wolff, S., Nature, 245, 460–462 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Judd, B. H., Shen, M. W., and Kaufman, T. C., Genetics, 71, 139–156 (1972).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Bishop, J. O., Cell, 2, 81–86 (1974).

    Article  CAS  Google Scholar 

  4. Britten, R. J., and Davidson, E. H., Science, 165, 349–357 (1969).

    Article  ADS  CAS  Google Scholar 

  5. King, M. C., and Wilson, A. C., Science, 188, 107–116 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Bridges, B. A., Environ. Hlth Perspect., 6, 221–227 (1973).

    Article  CAS  Google Scholar 

  7. Crow, F., Environ. Hlth Perspect., 6, 1–5 (1973).

    CAS  Google Scholar 

  8. Lethbak, A., Christiansen, C., and Stenderup, A., J. gen. Microbiol., 64, 377–380 (1970).

    Article  Google Scholar 

  9. Loveless, A., and Howarth, S., Nature, 184, 1780–1782 (1959).

    Article  ADS  CAS  Google Scholar 

  10. Minagawa, T., Wagner, B., Strauss, B., Archs Biochem. Biophys., 80, 442–445 (1959).

    Article  CAS  Google Scholar 

  11. de Serres, F. J., Brockman, H. E., Barnett, W. E., and Kølmark, H. C., Mutat. Res., 12, 129–142 (1971).

    Article  CAS  Google Scholar 

  12. Ogur, M., Minckler, S., Lindegren, G., and Lindegren, C. C., Archs Biochem. Biophys., 40, 175–184 (1952).

    Article  CAS  Google Scholar 

  13. Loprieno, N., Mutat. Res., 3, 486–493 (1966).

    Article  CAS  Google Scholar 

  14. Lim, J. K., and Snyder, L. A., Mutat. Res., 6, 129–137 (1968).

    Article  CAS  Google Scholar 

  15. Alikhanian, S. J., Zool. Zhur., 16 (1937).

  16. Bennett, M. D., Proc. R. Soc., B 181, 109–135 (1972).

    ADS  CAS  Google Scholar 

  17. Rédei, G. P., and Li, S. L., Genetics, 61, 453–459 (1969).

    PubMed  PubMed Central  Google Scholar 

  18. Moh, C. C., Mutat. Res., 7, 469–471 (1969).

    Article  CAS  Google Scholar 

  19. Bachmann, K., Chromosoma, 37, 85–93 (1972).

    Article  CAS  Google Scholar 

  20. Chu, E. H. Y., and Mailing, H. V., Genetics, 61, 1306–1312 (1968).

    CAS  Google Scholar 

  21. Amano, E., and Smith, H. H., Mutat. Res., 2, 344–351 (1965).

    Article  CAS  Google Scholar 

  22. Rees, H., and Jones, R. N., Int. Rev. Cytol., 32, 53 (1972).

    Article  CAS  Google Scholar 

  23. Ardashnikov, S. N., Soyfer, V. N., and Goldfarb, D. M., Biochem. biophys. Res. Commun., 16, 455–459 (1964).

    Article  CAS  Google Scholar 

  24. Strauss, B. S., Nature, 191, 730–731 (1961).

    Article  ADS  CAS  Google Scholar 

  25. Brown, D. F., Mutat. Res., 3, 365–373 (1966).

    Article  CAS  Google Scholar 

  26. Sinsheimer, R. L., Procedures in Nucleic Acid Research (edit. by Cantoni, and Davies), 559–576 (Harper and Row, New York, 1966).

    Google Scholar 

  27. Tessman, I., Poddar, R. K., and Kumar, S., J. molec. Biol., 9, 352–363 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The erratum article can be found online at https://doi.org/10.1038/259248a0

Rights and permissions

Reprints and permissions

About this article

Cite this article

HEDDLE, J., ATHANASIOU, K. Mutation rate, genome size and their relation to the rec concept. Nature 258, 359–361 (1975). https://doi.org/10.1038/258359a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/258359a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing