Reviews & Analysis

Filter By:

  • Decades of searching for theoretically motivated dark matter candidates have yielded no results, so the research community is starting to adopt different dark matter detection strategies. In a Viewpoint, seven scientists discuss these new approaches.

    • Yonit Hochberg
    • Yonatan F. Kahn
    • Kathryn M. Zurek
  • The discovery of high-energy astrophysical neutrinos and the first hints of coincident electromagnetic and neutrino emissions opened new opportunities in multi-messenger astronomy. We review theoretical expectations of neutrino emission from transient astrophysical sources and the current and upcoming experimental landscape.

    • Claire Guépin
    • Kumiko Kotera
    • Foteini Oikonomou
    Review Article
  • In this Perspective on the physics of particle generation in the respiratory tract, fate in the air upon exhalation and the physics of inhalation, the authors conclude that the general understanding of the entire process is rudimentary, and many open questions remain.

    • Lidia Morawska
    • Giorgio Buonanno
    • Luca Stabile
  • Spin–orbit coupling in non-centrosymmetric heterostructures is called the Rashba effect. This Review highlights the latest progress covering new classes of materials with a variety of ‘Rashba-like’ spin–momentum locking schemes and new trends in non-equilibrium transport leading to enhanced functionalities in spin- and optoelectronics.

    • Gustav Bihlmayer
    • Paul Noël
    • Aurélien Manchon
    Review Article
  • Controlled dissipation can be used to protect quantum information, control dynamics and enforce constraints. This Review explains the basic principles and overviews the applications of dissipation engineering to quantum error correction, quantum sensing and quantum simulation.

    • Patrick M. Harrington
    • Erich J. Mueller
    • Kater W. Murch
    Review Article
  • Spin qubits hosted in semiconducting nanostructures controlled and probed electrically are among platforms pursued to serve as quantum computing hardware. This Technical Review surveys experimentally achieved values on coherence, speed, fidelity and multi-qubit array size, reflecting the progress of semiconducting spin qubits over the past two decades.

    • Peter Stano
    • Daniel Loss
    Technical Review
  • Modelling soft-robot deformations induced by actuators and interactions with the surrounding environment can enable full uptake of embodied intelligence. This Technical Review provides a concise guide to modelling approaches and computational strategies that can lead to model-informed design of embodied intelligent robots.

    • Gianmarco Mengaldo
    • Federico Renda
    • Cecilia Laschi
    Technical Review
  • Topological quantum materials host protected, high-mobility surface states which can be used for energy conversion and storage. This Perspective discusses recent progress in using topological materials for water splitting, batteries and supercapacitors.

    • Huixia Luo
    • Peifeng Yu
    • Kai Yan
  • Polaritons enable the precise control of light at an extreme scale. Van der Waals (vdW) materials offer a natural and versatile platform to host and tailor polaritons. This Technical Review summarizes the state of the art in the manipulation of polaritons with vdW materials.

    • Yingjie Wu
    • Jiahua Duan
    • Qiaoliang Bao
    Technical Review
  • Fifty years after the publication of Philip Anderson’s landmark essay ‘More is different’ that crystallized the idea of emergence, eight scientists describe the most interesting phenomena that emerge in their fields.

    • Steven Strogatz
    • Sara Walker
    • Kwang-Il Goh
  • Understanding the fundamental limits to photonic design is both theoretically important and critical to the development of future high-performance photonic devices. This Review surveys progress made in this area and discusses an emerging general framework for evaluating photonic design limits based on conservation principles and optimization theory.

    • Pengning Chao
    • Benjamin Strekha
    • Alejandro W. Rodriguez
    Review Article
  • The study of Bose–Einstein condensation in photonic systems has attracted strong interest in a variety of physical platforms, including conventional lasers and optical parametric oscillators, exciton and exciton–polariton gases, and photons in dye-filled cavities and propagating geometries. The focus of this Review is to highlight those universal phenomena that stem from the driven-dissipative, non-equilibrium nature of these systems and affect the static, dynamic, superfluid and coherence properties of the condensate.

    • Jacqueline Bloch
    • Iacopo Carusotto
    • Michiel Wouters
    Review Article
  • Flat bands enhance the effect of electronic interactions and have emerged as a promising platform for superconductivity. This Review explains the quantum geometric origin of flat-band superconductivity and superfluidity, and discusses its relevance in graphene and ultracold gas moiré systems.

    • Päivi Törmä
    • Sebastiano Peotta
    • Bogdan A. Bernevig
    Review Article
  • Owing to the growing volumes of data from high-energy physics experiments, modern deep learning methods are playing an increasingly important role in all aspects of data taking and analysis. This Review provides an overview of key developments, with a focus on the search for physics beyond the standard model.

    • Georgia Karagiorgi
    • Gregor Kasieczka
    • David Shih
    Review Article
  • The polarization of the cosmic microwave background (CMB) may shed light on the nature of dark matter and dark energy, and on the origin of all structures in the Universe. Discovering a signature of such new physics in the CMB will require new observational and calibration strategies for future CMB experiments.

    • Eiichiro Komatsu
    Review Article
  • Living cells use geometric, biochemical and mechanical guiding cues to control intracellular protein patterns that regulate many vital functions. This Review discusses mechanisms of pattern guidance unveiled in living cells and how to study them from a physics perspective.

    • Tom Burkart
    • Manon C. Wigbers
    • Erwin Frey
    Review Article
  • The standard Hamiltonian approach to quantum field theory violates Poincaré invariance, leading to predictions with artificial dynamical effects and potentially obscuring the fundamental description of a physical system. This Perspective explains how such issues are avoided by using light-front Hamiltonian quantization.

    • Stanley J. Brodsky
    • Alexandre Deur
    • Craig D. Roberts
  • Active matter encompasses various non-equilibrium systems in which individual constituents convert energy into non-conservative forces or motion at the microscale. This Review provides an elementary introduction to the role of topology in active matter through experimentally relevant examples.

    • Suraj Shankar
    • Anton Souslov
    • Vincenzo Vitelli
    Review Article
  • Minimizing the energy of the Ising model is a prototypical combinatorial optimization problem, ubiquitous in our increasingly automated world. This Review surveys Ising machines — special-purpose hardware solvers for this problem — and examines the various operating principles and compares their performance.

    • Naeimeh Mohseni
    • Peter L. McMahon
    • Tim Byrnes
    Review Article