Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
New sources of extreme-ultraviolet to hard X-ray photons have enabled a wide range of short-wavelength nonlinear optical and spectroscopic methods over the past decade, and, for the future, offer unique opportunities to probe elementary dynamics in various systems.
Magnetic reconnection explosively releases stored magnetic energy in astrophysical plasmas. Thanks to advances in observations, exascale computing and multiscale experiments, it will be possible to solve outstanding physics problems, including the immense separation between global and dissipation scales, reconnection onset and particle acceleration.
Photonics is one of the key platforms for emerging quantum technologies, but its full potential can only be harnessed by exploiting miniaturization via on-chip integration. This Roadmap charts new directions and discusses the challenges associated with the hybrid integration of a variety of materials, devices and components.
In the past few years, gravitational-wave observations provided stunning insights into some of the most cataclysmic events in the Universe, heralding a bright future for gravitational-wave physics and astronomy. This is a Roadmap for the field in the coming two decades.
The Large Synoptic Survey Telescope (LSST), an upcoming astronomical survey, will deeply observe the entire southern sky in a broad range of colours. We present the LSST science opportunities and technical challenges in the field of galaxy formation and evolution.