Review Articles in 2022

Filter By:

Article Type
Year
  • Randomized measurements provide a feasible procedure for probing properties of many-body quantum states realized in today’s quantum simulators and quantum computers. This Review covers implementation, classical post-processing and theoretical performance guarantees of randomized measurement protocols, surveying their many applications and discussing current challenges.

    • Andreas Elben
    • Steven T. Flammia
    • Peter Zoller
    Review Article
  • Magnetic resonance elastography captures multiscale mechanical information conveyed by shear waves, enabling noninvasive measurement of the physical behaviour of biological tissues—a behaviour that can change markedly with disease. This Review summarizes the basic technical concepts of magnetic resonance elastography and outlines preclinical and clinical applications.

    • Ingolf Sack
    Review Article
  • Non-Hermitian theory consists of mathematical structures that are used to describe open systems, which can give rise to non-Hermitian topology not found in Hermitian systems. This Review provides an overview of non-Hermitian band topology and discusses recent developments, such as the non-Hermitian skin effect and non-Hermitian topological classifications.

    • Kun Ding
    • Chen Fang
    • Guancong Ma
    Review Article
  • The discovery of high-energy astrophysical neutrinos and the first hints of coincident electromagnetic and neutrino emissions opened new opportunities in multi-messenger astronomy. We review theoretical expectations of neutrino emission from transient astrophysical sources and the current and upcoming experimental landscape.

    • Claire Guépin
    • Kumiko Kotera
    • Foteini Oikonomou
    Review Article
  • Spin–orbit coupling in non-centrosymmetric heterostructures is called the Rashba effect. This Review highlights the latest progress covering new classes of materials with a variety of ‘Rashba-like’ spin–momentum locking schemes and new trends in non-equilibrium transport leading to enhanced functionalities in spin- and optoelectronics.

    • Gustav Bihlmayer
    • Paul Noël
    • Aurélien Manchon
    Review Article
  • Controlled dissipation can be used to protect quantum information, control dynamics and enforce constraints. This Review explains the basic principles and overviews the applications of dissipation engineering to quantum error correction, quantum sensing and quantum simulation.

    • Patrick M. Harrington
    • Erich J. Mueller
    • Kater W. Murch
    Review Article
  • Understanding the fundamental limits to photonic design is both theoretically important and critical to the development of future high-performance photonic devices. This Review surveys progress made in this area and discusses an emerging general framework for evaluating photonic design limits based on conservation principles and optimization theory.

    • Pengning Chao
    • Benjamin Strekha
    • Alejandro W. Rodriguez
    Review Article
  • The study of Bose–Einstein condensation in photonic systems has attracted strong interest in a variety of physical platforms, including conventional lasers and optical parametric oscillators, exciton and exciton–polariton gases, and photons in dye-filled cavities and propagating geometries. The focus of this Review is to highlight those universal phenomena that stem from the driven-dissipative, non-equilibrium nature of these systems and affect the static, dynamic, superfluid and coherence properties of the condensate.

    • Jacqueline Bloch
    • Iacopo Carusotto
    • Michiel Wouters
    Review Article
  • Flat bands enhance the effect of electronic interactions and have emerged as a promising platform for superconductivity. This Review explains the quantum geometric origin of flat-band superconductivity and superfluidity, and discusses its relevance in graphene and ultracold gas moiré systems.

    • Päivi Törmä
    • Sebastiano Peotta
    • Bogdan A. Bernevig
    Review Article
  • Owing to the growing volumes of data from high-energy physics experiments, modern deep learning methods are playing an increasingly important role in all aspects of data taking and analysis. This Review provides an overview of key developments, with a focus on the search for physics beyond the standard model.

    • Georgia Karagiorgi
    • Gregor Kasieczka
    • David Shih
    Review Article
  • The polarization of the cosmic microwave background (CMB) may shed light on the nature of dark matter and dark energy, and on the origin of all structures in the Universe. Discovering a signature of such new physics in the CMB will require new observational and calibration strategies for future CMB experiments.

    • Eiichiro Komatsu
    Review Article
  • Living cells use geometric, biochemical and mechanical guiding cues to control intracellular protein patterns that regulate many vital functions. This Review discusses mechanisms of pattern guidance unveiled in living cells and how to study them from a physics perspective.

    • Tom Burkart
    • Manon C. Wigbers
    • Erwin Frey
    Review Article
  • Active matter encompasses various non-equilibrium systems in which individual constituents convert energy into non-conservative forces or motion at the microscale. This Review provides an elementary introduction to the role of topology in active matter through experimentally relevant examples.

    • Suraj Shankar
    • Anton Souslov
    • Vincenzo Vitelli
    Review Article
  • Minimizing the energy of the Ising model is a prototypical combinatorial optimization problem, ubiquitous in our increasingly automated world. This Review surveys Ising machines — special-purpose hardware solvers for this problem — and examines the various operating principles and compares their performance.

    • Naeimeh Mohseni
    • Peter L. McMahon
    • Tim Byrnes
    Review Article
  • Polaritonics is the physics of strongly coupled light–matter states that studies condensates and superfluids of bosonic quasiparticles in solid-state systems. Coherent flows of exciton–polaritons can be used for classical and quantum information processing, offering advantages of full optical control and read-out.

    • Alexey Kavokin
    • Timothy C. H. Liew
    • Sven Hoefling
    Review Article
  • Multi-messenger observations of gravitational waves and electromagnetic radiation directly probe the synthesis of heavy elements in the Universe. This Review summarizes recent results and charts future challenges and opportunities for identifying the astrophysical origin of roughly half of the elements heavier than iron.

    • Daniel M. Siegel
    Review Article
  • New approaches to integrate high-dimensional recordings of brain activity with single-neuron resolution with simultaneous recordings of natural animal behaviour enable the study of brain-wide activity in small animals including worms, flies and fish during behaviours and decision-making. This Review surveys experimental and theoretical approaches that have opened this area of systems neuroscience.

    • Albert Lin
    • Daniel Witvliet
    • Vivek Venkatachalam
    Review Article
  • Mastering thermal conductivities of materials under pressure is extremely important for managing thermal processes, understanding the thermal transport mechanisms and for potential technological applications. This Review surveys the progresses in technique developments, research results and scientific implications in this field.

    • Yan Zhou
    • Zuo-Yuan Dong
    • Xiao-Jia Chen
    Review Article
  • Graphene oxide (GO) has attracted intensive research interest, owing to remarkable physicochemical properties. Nevertheless, its high chemical reactivity and low stability may lead to uncontrolled GO derivatives. The chemistry of GO can be controlled by selective derivatization of the oxygenated groups and C=C bonds and by appropriate characterization.

    • Shi Guo
    • Slaven Garaj
    • Cécilia Ménard-Moyon
    Review Article
  • The observation of gravitational waves emitted in the merger of neutron stars and the observations of X-rays emitted by hotspots on their surfaces are beginning to reveal nuclear physics insights about these compact objects.

    • Nicolás Yunes
    • M. Coleman Miller
    • Kent Yagi
    Review Article