Review Articles

Filter By:

Article Type
  • Designer materials and advanced fabrication technologies are transforming architecture, so that architects, engineers and materials scientists now work side by side to develop innovative architectural solutions. This Review follows these developments for different materials, in particular wood, ceramics, metals, concrete, glass, synthetic composites and polymers.

    • Martin Bechthold
    • James C. Weaver
    Review Article
  • Advances in electronic devices have opened opportunities for extracting a variety of data from the human body, and for the treatment of diseases. In this Review, tissue properties affecting device integration are described and electronic systems interfacing with organs and engineered tissues are highlighted.

    • Ron Feiner
    • Tal Dvir
    Review Article
  • The field of DNA nanotechnology takes the DNA molecule out of its biological context and uses its information to assemble structural motifs and connect these motifs together. In this Review, a historical account of the field and the approaches used to assemble DNA nanostructures are outlined, followed by a discussion of emerging applications.

    • Nadrian C. Seeman
    • Hanadi F. Sleiman
    Review Article
  • Nanoscale semiconductor materials have large tolerance to lattice mismatches, which enables an almost arbitrary control of alloy composition and bandgap energy. In this Review, semiconductor alloy nanomaterials are examined, and their synthesis, properties and potential for applications — such as lasers, solid-state lighting and solar cells — are discussed.

    • Cun-Zheng Ning
    • Letian Dou
    • Peidong Yang
    Review Article
  • Mechanical metamaterials exhibit exotic properties that cannot be realized in conventional materials. In this Review, recently developed shape-morphing, topological and nonlinear metamaterials are discussed together with their functionalities and design principles, and future challenges for the field are outlined.

    • Katia Bertoldi
    • Vincenzo Vitelli
    • Martin van Hecke
    Review Article
  • Coherent perfect absorbers (CPAs) are electromagnetic structures in which the absorption of electromagnetic energy is assisted by the interference of incident waves. This Review summarizes the fundamental principles, implementations and promising applications of CPAs for the linear control of light with light.

    • Denis G. Baranov
    • Alex Krasnok
    • Yidong Chong
    Review Article
  • Singlet exciton fission is a carrier multiplication process in organic semiconductors that could be used to enhance the efficiency of conventional inorganic solar cells and break the Shockley–Queisser limit of single-junction photovoltaics. In this Review, recent progress in the field is assessed, highlighting the key results and identifying the crucial challenges ahead.

    • Akshay Rao
    • Richard H. Friend
    Review Article
  • Tuning the surface strain in multimetallic nanomaterials represents an effective strategy to improve their electrocatalytic properties. In this Review, using the oxygen reduction reaction as a model, the underlying relationship between surface strain and catalytic activity is discussed, along with the introduction, tuning and quantification of strain in nanocatalysts.

    • Mingchuan Luo
    • Shaojun Guo
    Review Article
  • Picoscale engineering of bonds is a powerful method to tune materials properties. Transcending nanoscience, picoscience offers the ultimate length scale to manipulate materials through subtle bond distortions between individual atoms, as this Review discusses through several examples ranging from perovskites to superconductors and to topological materials.

    • Sohrab Ismail-Beigi
    • Frederick J. Walker
    • Charles H. Ahn
    Review Article
  • Tetradymite-type materials, such as Bi2Te3, have for decades been of interest as excellent thermoelectrics near ambient temperature and have recently enabled many seminal studies on topological insulators. In this Review, we discuss the recent progress in optimizing the properties of bulk and thin-film tetradymites for such studies.

    • Joseph P. Heremans
    • Robert J. Cava
    • Nitin Samarth
    Review Article
  • Inorganic oxide materials are used in semiconductor electronics, ion exchange, catalysis, coatings, gas sensors and as separation materials. In this Review, we explain how polyoxometalate clusters are amenable to molecular control and can be assembled into inorganic frameworks owing to the molecular nature of their building blocks.

    • Laia Vilà-Nadal
    • Leroy Cronin
    Review Article
  • The discovery of new thermoelectric materials is challenging owing to the diversity of the chemical space and to the serial nature of experimental work. This Review highlights the recent progress in computationally guided discovery of thermoelectric materials and identifies the key outstanding challenges.

    • Prashun Gorai
    • Vladan Stevanović
    • Eric S. Toberer
    Review Article
  • Graphene and its macroscopic assemblies and composites are currently enabling a range of high-performance ‘smart’ materials that are responsive to various stimuli. In this Review, different graphene-based smart materials are described, along with their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery.

    • Xiaowen Yu
    • Huhu Cheng
    • Gaoquan Shi
    Review Article
  • Overall water splitting using powdered photocatalysts is a promising approach to large-scale solar hydrogen production. This Review details recent developments in particulate photocatalysts for overall water splitting based on one- and two-step photoexcitation systems.

    • Shanshan Chen
    • Tsuyoshi Takata
    • Kazunari Domen
    Review Article
  • Low-bandgap (<1.6 eV) polymers enable polymer solar cells to form effective tandem structures for harvesting near-infrared solar energy as well as reducing thermal loss. This Review summarizes recent progress and provides a perspective on various low-bandgap polymer-containing tandem solar cells; namely, pure polymer–polymer tandem, hybrid polymer–amorphous silicon tandem and unconventional perovskite–polymer tandem solar cells.

    • Gang Li
    • Wei-Hsuan Chang
    • Yang Yang
    Review Article
  • The field of active matter studies how internally driven motile components self-organize into large-scale dynamical states and patterns. This Review discusses how active matter concepts are important for understanding cell biology, and how the use of biochemical components enables the creation of new inherently non-equilibrium materials with unique properties that have so far been mostly restricted to living organisms.

    • Daniel Needleman
    • Zvonimir Dogic
    Review Article
  • Asymmetric chiroplasmonic structures comprising nanoparticles or nanorods can be assembled using DNA scaffolds by a range of methods. In this Review, these assembly methods, the chiroplasmonic properties of static and dynamically reconfigurable systems, theoretical modelling of the chiroplasmonic structures, their applications for sensing and information processing, and future perspectives are discussed.

    • Alessandro Cecconello
    • Lucas V. Besteiro
    • Itamar Willner
    Review Article