A section of the issue cover containing part a CO2 electrolyzer and computer display that represents a digital twin.

Read our May Issue!

Launched in January 2024, Nature Chemical Engineering is an online-only journal covering the most significant  research and analysis of relevance to the diverse community of chemical engineers.


  • A petrochemical refinery located at the edge of a body of water illuminates the surroundings with its many bright lights at night.

    In advance of the formal January 2024 launch, the editors have curated an online Collection of articles published by Nature Research to showcase the potential breadth and scope of the journal.

Nature Chemical Engineering is a Transformative Journal; authors can publish using the traditional publishing route OR via immediate gold Open Access.

Our Open Access option complies with funder and institutional requirements.


  • Biomolecular condensates can contain multiple phases. The number of droplets of each phase and their location give the condensate a certain architecture. Here the authors present a method to create a range of transient architectures in biomolecular condensates, making the architecture or interfacial area controllable design variables in experiments.

    • Nadia A. Erkamp
    • Madelief A. M. Verwiel
    • Tuomas P. J. Knowles
    ArticleOpen Access
  • The adsorptive separation of olefin–paraffin mixtures requires the development of robust adsorbents with high selectivity and adsorption capacity. Here the authors develop a physiosorbent featuring surface sieving carbon skins several nanometers in thickness, with molecular-selective pores centered at 3.6 Å, for separation of C3H6 and C3H8 with high dynamic selectivity.

    • Li-Ping Guo
    • Ru-Shuai Liu
    • An-Hui Lu
  • Tandem CO2 electrolysis has demonstrated strong potential for transforming captured CO2 into multicarbon products, but more effort is needed in scaling these systems to commercial levels. The authors address this crucial need by elevating tandem CO2 electrolysis to the kilowatt scale, marking a significant step toward real-world implementation.

    • Bradie S. Crandall
    • Byung Hee Ko
    • Feng Jiao
  • With the global climate crisis, approaches to capture emissions are critical, with the heavy industry sector being particularly challenging to decarbonize. The authors describe a new enzyme cascade for converting industrial emissions into formate salts as a hydrogen carrier or building block for chemicals.

    • Jinhee Lee
    • Suk Min Kim
    • Yong Hwan Kim
    ArticleOpen Access
  • The design of CO2 electrolyzers is complicated by coupled transport and reaction phenomena. Here the authors develop a continuum model incorporating physical phenomena across multiple scales to predict the activity and selectivity of CO2 electrolysis, along with the loss of CO2 due to crossover in membrane electrode assemblies.

    • Eric W. Lees
    • Justin C. Bui
    • Adam Z. Weber
  • Achieving a net-zero future requires that hard-to-abate sectors be addressed. Co-production offers an opportunity to mitigate chemical and steel sector emissions by extracting H2 and CO from steelmaking off-gas and using them for chemical syntheses. The authors examine carbon mitigation and costs of co-producing chemicals and steel in China.

    • Yang Guo
    • Jieyi Lu
    • Denise L. Mauzerall