Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 1 Issue 1, January 2018

Identifying single–atom electrocatalysts

A lack of insight into the structure of single-atom electrocatalysts holds back their rational design. Now, Fei et al. report the synthesis of single-atom nickel, iron and cobalt electrocatalysts in nitrogen-doped graphene. In-depth characterization identifies the exact structure of the active sites and allows a theoretical prediction of their relative activities in oxygen evolution reactions – a structure–activity relationship that is supported by subsequent experiments.

See Fei et al.

Image: J. Dong and H. Fei. Cover Design: Karen Moore.

Editorial

  • Welcome to the first issue of Nature Catalysis. While the format of a Nature Research journal will probably be familiar to most of our readers, in this editorial we would like discuss the unique aspects of this journal and our aims for the future.

    Editorial

    Advertisement

Top of page ⤴

Comment & Opinion

  • Catalysis is a subject with a surprisingly long and rich history. It seems certain that it has an even brighter future as the challenges of our society require a focus on this discipline more than ever.

    • John Meurig Thomas
    Comment
Top of page ⤴

News & Views

  • Most electrochemical CO2 reduction research has been confined to fundamental studies that attempt to understand how to overcome low selectivity and energy efficiency for valuable oxygenated products. Now, a modular, scalable system generates multi-carbon oxygenates with a potential solar-to-alcohol efficiency of more than 8%.

    • Erin B. Creel
    • Bryan D. McCloskey
    News & Views
  • Electrophilic substitution of aromatics on zeolites is generally assumed to occur through the Wheland-type intermediate, although direct experimental evidence is lacking. Now, this carbenium ion has been identified as a stable intermediate in the alkylation of benzene with ethanol on an industrial zeolite catalyst.

    • Teresa Blasco
    News & Views
  • In nature, a manganese catalyst is used for photosynthetic water oxidation, but efforts to develop artificial manganese-based counterparts have been hampered by the lability of manganese complexes. By using a bulky and hydrophilic ligand, a water-soluble Mn12 complex is found to be a stable and efficient water oxidation electrocatalyst.

    • Gary W. Brudvig
    News & Views
Top of page ⤴

Reviews

  • Chemical and biological catalysts provide distinct advantages and disadvantages to the synthetic chemist. This Review focuses on efforts to combine chemo- and biocatalysts, outlining the opportunities achievable by this approach and also efforts to overcome any incompatibilities between these different systems.

    • Florian Rudroff
    • Marko D. Mihovilovic
    • Uwe T. Bornscheuer
    Review Article
Top of page ⤴

Research

  • Bioethanol-based alkylation of benzene is a potentially sustainable route to commodity chemicals, but there is little knowledge of the reaction mechanism. Here, Weckhuysen and co-workers study the zeolite catalysed alkylation of benzene with ethanol, identifying the active alkylating agent and experimentally show the presence of a σ-complex intermediate.

    • Abhishek Dutta Chowdhury
    • Klaartje Houben
    • Bert M. Weckhuysen
    Article
  • The generation of useful chemicals from CO2 and renewable energy is an attractive—but challenging—endeavour. This work reports on the long-term operation of commercial electrodes for efficient CO2 reduction, with subsequent fermentation of the syngas product completing the technical photosynthesis of alcohols.

    • Thomas Haas
    • Ralf Krause
    • Guenter Schmid
    Article
  • Hydrogenation is one of the most common catalytic processes on both laboratory and industrial scales, and typically is carried out with a noble metal catalyst. Here, the authors show that alkaline earth metal amides are capable of hydrogenating imines under mild conditions.

    • Heiko Bauer
    • Mercedes Alonso
    • Sjoerd Harder
    Article
  • Peroxygenases can selectively functionalize organic compounds, but are sensitive to the co-substrate H2O2. Hollmann and co-workers show that water oxidation catalysts can provide a controlled supply of H2O2 to the enzyme in the presence of visible light, allowing efficient oxyfunctionalization without stoichiometric reductants.

    • Wuyuan Zhang
    • Elena Fernández-Fueyo
    • Frank Hollmann
    Article
  • Atomically dispersed metal catalysts are of increasing importance in many catalytic processes, but clear structural identification is challenging. Here, a general synthesis of metal (nickel, iron and cobalt) single-atom catalysts on nitrogen-doped graphene allows the authors to identify a common structure and furthermore correlate structure with electrocatalytic activity.

    • Huilong Fei
    • Juncai Dong
    • Yu Huang
    Article
  • Biocatalysis, if selective, offers great potential for the well-controlled release of drugs and other payloads. Here, Minko and co-workers separate enzymes and substrates by loading them onto individual, polymer-coated nanoparticles, and show that a magnetic field switches on the catalytic activity by merging the polymer shells.

    • Andrey Zakharchenko
    • Nataliia Guz
    • Sergiy Minko
    Article
Top of page ⤴

Search

Quick links