Tree on the background with molecules at the front and some bubbles with plastic bottles

Read our April issue

Nature Catalysis covers all areas of catalysis, incorporating the work of scientists, engineers and industry. April issue now live.


  • Stay up to date with the latest in catalysis news and research. Register for the e-alert to get content delivered directly to your inbox.

  • historical laboratory equipment

    This series brings together our thematic retro News & Views offerings. These short articles reflect on historical developments in the fields of catalysis and their impact on contemporary research.

  • CO<sub>2</sub> Reimagined

    In acknowledgement of the five-year anniversary of the Paris Agreement, this Focus is dedicated to progressing the fundamental science and practical implementation of this technology to advance climate goals.


  • Electroreduction of CO2 competes with the hydrogen evolution reaction; thus, controlling water’s activity to exclusively act as a proton donor is a desirable yet challenging goal. Now the behaviour of water in aprotic solvents is shown to depend on the solvent’s donor ability, which can modulate the hydrogen bond network and in turn promote the desired reactivity.

    • Reginaldo J. Gomes
    • Ritesh Kumar
    • Chibueze V. Amanchukwu
  • Pt is the most active catalyst for the hydrogen evolution reaction in acidic media, but the precise nature of its active sites remains elusive. Now electrical transport spectroscopy and molecular dynamics are combined to map the hydrogen adsorption sites on Pt nanowires and reveal the much higher activity of (111)/(100) edge sites.

    • Zhihong Huang
    • Tao Cheng
    • Xiangfeng Duan
  • Olefin hydroformylation is traditionally performed with homogeneous catalysts. Here the authors introduce a heterogeneous system based on zeolite-confined Rh clusters that is characterized by high efficiency for the hydroformylation of C6–C12 terminal olefins into linear aldehydes with high selectivity.

    • Xiaomeng Dou
    • Tao Yan
    • Lichen Liu
  • Photoredox-catalysed coupling of electron-rich aryl electrophiles based on simple nickel salts usually suffers from a slow oxidative addition. Now, it is shown that thianthrenation leads to more favourable redox properties of the substrates, alleviating this problem in carbon–heteroatom bond-forming reactions.

    • Shengyang Ni
    • Riya Halder
    • Tobias Ritter
    ArticleOpen Access
  • Direct stereoselective amination of tertiary C–H bonds without the assistance of directing groups is a challenging task in synthetic organic chemistry. Now a nitrene transferase is engineered to aminate tertiary C–H bonds with high enantioselectivity, providing direct access to valuable chiral α-tertiary primary amines.

    • Runze Mao
    • Shilong Gao
    • Frances H. Arnold
  • Asymmetric versions of radical-mediated alkene difunctionalizations featuring hydrocarbon precursors are currently elusive. Here the authors report an asymmetric vicinal alkene dicarbofunctionalization based on the activation of C(sp3)–H bonds through the combination of photocatalysed hydrogen atom transfer and nickel catalysis.

    • Xia Hu
    • Iván Cheng-Sánchez
    • Cristina Nevado
    ArticleOpen Access
    • Atropisomerism is an expanding target of asymmetric catalysis. In this Review, recent advances in atroposelective synthesis under catalytic control are highlighted with a focus on general strategies that provide high versatility and modularity.

      • Shao-Hua Xiang
      • Wei-Yi Ding
      • Bin Tan
      Review Article
    • Gut microbes have enzymes that break down the heavily glycosylated mucin protein of host animals, but known enzymes recognize only one glycan chain. Now, bioinformatic exploration has uncovered a family of mucinases that targets dense sugar residues.

      • Shinya Fushinobu
      News & Views
    • Malonyl-CoA is one of the fundamental building blocks for the synthesis of industrially or pharmaceutically important chemicals, but its biosynthesis via the innate acetyl-CoA carboxylation pathway remains slow and inefficient. Now, an artificial non-carboxylative malonyl-CoA biosynthetic pathway has been developed, significantly enhancing malonyl-CoA supply by boosting carbon and energy efficiency while sidestepping the inhibitions by host cell regulations.

      • Dongsoo Yang
      News & Views
    • Ethylene, despite being a cornerstone of the modern petrochemical industry, continues to pose challenges during its production. Now, a dual single-atom catalyst design emerges as a remarkable solution for the efficient semi-hydrogenation of acetylene.

      • Haisong Feng
      • Xin Zhang
      News & Views
    • Material–microbe hybrids represent an interesting class of catalyst with potential for high energy efficiency and product selectivity. In this Perspective the authors discuss some of the difficulties in understanding these interdisciplinary systems and the attempts to unify the approaches taken by different research communities to further the field.

      • Xun Guan
      • Yongchao Xie
      • Chong Liu

Nature Careers

Science jobs