Enzyme and people

Read our March issue

Nature Catalysis covers all areas of catalysis, incorporating the work of scientists, engineers and industry. March issue now live.


  • Stay up to date with the latest in catalysis news and research. Register for the e-alert to get content delivered directly to your inbox.

  • historical laboratory equipment

    This series brings together our thematic retro News & Views offerings. These short articles reflect on historical developments in the fields of catalysis and their impact on contemporary research.

  • CO<sub>2</sub> Reimagined

    In acknowledgement of the five-year anniversary of the Paris Agreement, this Focus is dedicated to progressing the fundamental science and practical implementation of this technology to advance climate goals.

Nature Catalysis is a Transformative Journal; authors can publish using the traditional publishing route OR via immediate gold Open Access.

Our Open Access option complies with funder and institutional requirements.


  • The dynamic transformation of Cu ions during the selective catalytic reduction of NOx on Cu zeolites is well documented, although the function of the zeolite framework has not been fully understood. Here the authors unravel the role of anionic Al sites in the zeolite framework in regulating the mobility and reactivity of Cu cations during catalysis.

    • Siddarth H. Krishna
    • Anshuman Goswami
    • Rajamani Gounder
  • To overcome mass transport limitations in zeolite-catalysed reactions, scientists must often resort to hierarchical or nanosized zeolites; however, the synthesis of such materials remains challenging. Here the authors disclose a one-pot method for the preparation of Si-zoned MFI-type catalysts with improved diffusion properties for the methanol-to hydrocarbon reaction.

    • Thuy T. Le
    • Wei Qin
    • Jeffrey D. Rimer
  • Although the Tetrahymena group I intron was the first RNA catalyst discovered, important mechanistic details remain ambiguous. Now six different conformational states of Tetrahymena group I intron self-splicing and an unexpected pseudoknotted structure are resolved by cryogenic electron microscopy.

    • Bingnan Luo
    • Chong Zhang
    • Zhaoming Su
  • Oxygen reduction to hydrogen peroxide is a promising alternative to replace the energy-intensive anthraquinone process in industry. Now, the hydrogen peroxide electrosynthesis performance of a carbon-supported cobalt phthalocyanine catalyst is tuned via the introduction of oxygen functional groups to the support, which optimize the electronic structure of cobalt active sites.

    • Byoung-Hoon Lee
    • Heejong Shin
    • Edward H. Sargent
  • The catalytic cycle of formate dehydrogenase is generally assumed to involve an apoenzyme state according to the Theorell–Chance mechanism. Now, based on single-molecule experiments and multiscale simulations of formate dehydrogenase from Candida boidinii, an alternative mechanism that bypasses the apoenzyme state is proposed.

    • Aihui Zhang
    • Xiaoyan Zhuang
    • Wenjing Hong
    • Microporous zeolites have pores of molecular dimension that can stabilize desired chemical pathways but may also introduce mass-transfer limitations. Now, synthesis protocols allow for greater control of catalyst active-site location via elemental zoning, enabling an alternative strategy to reduce mass-transfer limitations and consequently improve catalyst performance for methanol-to-hydrocarbon reactions.

      • Brandon C. Bukowski
      News & Views
    • Electron transfer processes are almost ubiquitous, yet hard to understand thoroughly due to the variability of catalytic species involved. Now, a detailed mechanistic picture of the electron transfer associated with polypyridine nickel systems has been reported, offering an answer to the electron transfer puzzle of these complexes.

      • Shengchun Wang
      • Aiwen Lei
      News & Views
    • The ability to maximize electron utilization in electrosynthesis has been a long-standing goal, with research typically focusing on catalyst design or pairing disparate reactions. Now, electrocatalytic hydrogenation is performed with Faradaic efficiencies approaching 200% by producing hydrogen atoms from both the reduction and oxidation reactions simultaneously.

      • Rebecca S. Sherbo
      • Aiko Kurimoto
      News & Views
    • Computational chemistry has the potential to aid in the design of heterogeneous catalysts; however, there is currently a large gap between the complexity of real systems and what can be readily computed at scale. This Review discusses the ways in which machine learning can assist in closing this gap to facilitate rapid advances in catalyst discovery.

      • Tianyou Mou
      • Hemanth Somarajan Pillai
      • Hongliang Xin
      Review Article
    • Retrobiosynthesis aims to create novel biosynthetic pathways for the beneficial production of molecules of interest. This Review outlines how machine learning can help to advance retrobiosynthesis by improving retrosynthesis planning, enzyme identification and selection, and the engineering of enzymes and pathways.

      • Tianhao Yu
      • Aashutosh Girish Boob
      • Huimin Zhao
      Review Article