Micrograph of nickel oxide phases

Read our February issue

Nature Catalysis covers all areas of catalysis, incorporating the work of scientists, engineers and industry. February issue now live.

Announcements

  • Stay up to date with the latest in catalysis news and research. Register for the e-alert to get content delivered directly to your inbox.

  • historical laboratory equipment

    This series brings together our thematic retro News & Views offerings. These short articles reflect on historical developments in the fields of catalysis and their impact on contemporary research.

  • CO<sub>2</sub> Reimagined

    In acknowledgement of the five-year anniversary of the Paris Agreement, this Focus is dedicated to progressing the fundamental science and practical implementation of this technology to advance climate goals.

Advertisement

  • Unstrained aryl–aryl bonds are among the most inert bonds in organic chemistry. Now the development of a split cross-coupling strategy enables the direct functionalization of such bonds through Rh-catalysed C–C cleavage and cross-coupling with aryl halides, providing a method for biaryl synthesis.

    • Congjun Yu
    • Zining Zhang
    • Guangbin Dong
    Article
  • The synthesis of well-defined heterostructure interfaces can be leveraged to design advanced catalysts. Now a catalyst consisting of carbon-supported Janus particles with crystalline Ru and amorphous CrOx sides is shown to achieve high performance for both alkaline hydrogen oxidation and evolution reactions due to the synergy between both sides.

    • Bingxing Zhang
    • Jianmei Wang
    • Wenping Sun
    Article
  • In 2018 a descriptor was put forward to correlate the activity of various electrocatalytic reactions on carbon-based single-atom catalysts, but some data the work was based on were later found to be incorrect. This work revisits and amends the original 2018 study while presenting a modified version of the φ descriptor.

    • Haoxiang Xu
    • Daojian Cheng
    • Xiao Cheng Zeng
    Article
  • Catalytic conjunctive cross-coupling for the generation of densely functionalized sp3-rich scaffolds that are often found in biologically active compounds is underdeveloped. Now, iron-catalysed dicarbofunctionalization of olefins with dialkylzinc and haloalkanes provides access to synthetically challenging C(sp3)-rich molecules.

    • Tong-De Tan
    • Juan M. I. Serviano
    • Ming Joo Koh
    Article
  • Mucins are glycosylated proteins with important biological functions such as protection. Although glycopeptidases can cleave them, dedicated hydrolytic enzymes specific for mucins were unknown. Now microbial mucinases are discovered that specifically recognize mucin O-glycan clusters and employ two glutamic acid residues for catalytic cleavage.

    • Yoshiki Narimatsu
    • Christian Büll
    • Ramon Hurtado-Guerrero
    Article
    • The coenzyme Q biosynthetic pathway has evaded full characterization for decades, in part due to the inherent insolubility of coenzyme Q and the instability of its membrane-associated biosynthetic enzymes. Now, researchers have resurrected an active ancestral coenzyme Q metabolon in vitro that has unveiled valuable insights into previously uncharacterized aspects of coenzyme Q biosynthesis.

      • Kelsey J. Feustel
      • Catherine F. Clarke
      News & Views
    • A deeper understanding of reaction mechanisms should lead to improvements in the selectivity of organic electrosynthesis methods. This approach has now been used to explain the role of magnesium diacetate in the Ag-electrocatalysed reductive coupling of sp3 organic chlorides with aldehydes or ketones with increased selectivity for the desired alcohol product.

      • Angel Cuesta
      News & Views
    • Chiral BINOL-phosphates have qualified as privileged Brønsted acid organocatalysts, providing solutions to many challenging enantioselective transformations for a wide range of substrates under mild reaction conditions. Here we revisit the story of their origins.

      • Svetlana B. Tsogoeva
      News & Views
    • The ab initio atomistic thermodynamics approach, coined by Reuter and Scheffler formally in 2001, remains pivotal for understanding and predicting the stable surfaces of thermal catalysts under technical conditions.

      • Taehun Lee
      • Aloysius Soon
      News & Views

Nature Careers

Science jobs

Advertisement