Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News and Commentary
  • Published:

News & Commentary

Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG et al. A decrease of Reelin expression as a putative vulnerability factor in schizophrenia Proc Natl Acad Sci USA 1998 95: 15718–15723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fatemi SH, Earle JA, McMenomy T . Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression Mol Psychiatry 2000 5: 654–663

    Article  CAS  PubMed  Google Scholar 

  3. Guidotti AR, Auta J, Davis J, Dwivedi Y, Grayson D, Impagnatiello F et al. Decrease in Reelin and glutamic acid decarboxylase 67 (GAD 67) expression in schizophrenia and bipolar disorder: a postmortem brain study Arch Gen Psychiatry 2000 57: 1061–1069

    Article  CAS  PubMed  Google Scholar 

  4. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JOB et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations Nature Genet 2000 26: 93–96

    Article  CAS  PubMed  Google Scholar 

  5. Keller F, Persico AM, Zelante L, Gasparini P, D'Agruma N, Maiorano N et al. Reelin gene alleles and haplotypes are associated with autistic disorder Soc Neurosci 2000 26: 77 (31.11)

    Google Scholar 

  6. Bothwell M, Giniger E . Alzheimer's disease: neurodevelopment converges with neurodegeneration Cell 2000 102: 271–273

    Article  CAS  PubMed  Google Scholar 

  7. Falconer DS . Two new mutants, Trembler and ‘Reeler’, with neurological actions in the house mouse J Genetics 1951 50: 182–201

    Google Scholar 

  8. Goffinet AM . An early developmental defect in the cerebral cortex of the Reelor mouse Anat Embryol 1979 157: 205–218

    Article  CAS  Google Scholar 

  9. Caviness Jr VS, Sidman RL . Time of origin of corresponding cell classes in the cerebral cortex of normal and mutant reeler mice: an autoradiographic analysis J Comp Neurol 1973 148: 141–152

    Article  CAS  Google Scholar 

  10. Goffinet AM . Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice Brain Res 1984 319: 261–296

    Article  CAS  PubMed  Google Scholar 

  11. Goffinet AM . The reeler gene: a clue to brain development and evolution Int J Dev Biol 1992 36: 101–107

    CAS  PubMed  Google Scholar 

  12. Ikeda Y, Terashima T . Expression of Reelin, the gene responsible for the reeler mutation, in embryonic development and adulthood in the mouse Dev Dyn 1997 210: 157–172

    Article  CAS  PubMed  Google Scholar 

  13. Ogawa M, Miyata T, Nakajima K, Yoguy K, Seiko M, Ikenaka K et al. The reeler gene-associated antigen on Cajal–Retzius neurons is a crucial molecule for laminar organization of cortical neurons Neuron 1995 14: 890–912

    Article  Google Scholar 

  14. D'Arcangelo G, Miao GG, Chon S-C, Soares HD, Morgan JI, Curran T . A protein related to extracellular matrix proteins detected in the mouse mutant reeler Nature 1995 374: 719–723

    Article  CAS  PubMed  Google Scholar 

  15. Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A et al. Reelin is preferentially expressed in neurons synthesizing gamma-ambiobutyric acid in cortex and hippocampus of adult rats Proc Natl Acad Sci 1990 95: 3221–3226

    Article  Google Scholar 

  16. Lacor P, Grayson DR, Auto J, Sugaya I, Costa E, Guidotti A . Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation Proc Natl Acad Sci 2000 97: 3556–3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yip JW, Yip YPL, Nakajima K, Capriotti C . Reelin controls position of autonomic neurons in the spinal cord Proc Natl Acad Sci USA 2000 97: 8612–8616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meyer G, Wahle P . The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex Eur J Neurosci 1999 11: 3937–3944

    Article  CAS  PubMed  Google Scholar 

  19. Nishikawa S, Gotto S, Hamasaki T, Ogawa M et al. Reelin in the developing rat striatum Brain Res 1999 850: 244–248

    Article  CAS  PubMed  Google Scholar 

  20. Gallagher E, Howell BW, Soriano P, Cooper JA et al. Cerebellar abnormalities in the disabled (mdab1–1) mouse J Comp Neurol 1998 402: 238–251

    Article  CAS  PubMed  Google Scholar 

  21. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J et al. Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2 Cell 1999 97: 689–701

    Article  CAS  PubMed  Google Scholar 

  22. Hartmann D, DeStrooper B, Saftig P . Presenilin-1 deficiency leads to loss of Cajal–Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly Curr Biol 1999 9: 719–727

    Article  CAS  PubMed  Google Scholar 

  23. Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K et al. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice Nature 1997 380: 730–733

    Article  Google Scholar 

  24. Kojima T, Nakajima K, Mikoshiba K . The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice Mol Brain Res 2000 75: 121–127

    Article  CAS  PubMed  Google Scholar 

  25. Yokoi N, Shimizu S, Ishibashi K, Kitada K et al. Genetic mapping of the rat mutation creeping and evaluation of its positional candidate gene reelin Mammal Gen 2000 11: 111–114

    Article  CAS  Google Scholar 

  26. Mallamaci A, Mercurio S, Muzio L, Cecchi C et al. The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex J Neurosci 2000 20: 1107–1118

    Article  Google Scholar 

  27. Hevner RF, Shi L, LeWinter R, Rubenstein JLR . Cortical phenotype of Tbr-1 mutant mice: laminar inversion and decreased expression of Reelin Soc Neurosci Abst 1999 25: 502

    Google Scholar 

  28. Tueting P, Costa E, Dwivedi Y, Guidotti A et al. The phenotypic characteristics of heterozygous reeler mouse NeuroReport 1997 10: 1327–1334

    Google Scholar 

  29. Darmanto W, Inouye M, Takagishi Y, Ogawa M et al. Derangement of Purkinje cells in the rat cerebellum following prenatal exposure to x-irradiation: decreased reelin levels is a possible cause J Neuropath Exp Neurol 2000 57: 251–262

    Article  Google Scholar 

  30. Fatemi SH, Sidwell R, Akhter P, Sedgwick J, Thuras P, Bailey K et al. Human influenza viral infection in utero increases nNOS expression in hippocampi of neonatal mice Synapse 1998 29: 84–88

    Article  CAS  PubMed  Google Scholar 

  31. Fatemi SH, Sidwell R, Kist D, Akhter P, Meltzer HY, Bailey K et al. Differential expression of synaptosome-associated protein 25 KDa (SNAP-25) in hippocampi of neonatal mice following exposure to human influenza virus in utero Brain Res 1998 800: 1–9

    Article  CAS  PubMed  Google Scholar 

  32. Fatemi SH, Emaian ES, Kist D, Sidwell RW et al. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice Mol Psychiatry 1999 4: 145–154

    Article  CAS  PubMed  Google Scholar 

  33. Fatemi SH, Cuadra A, El-Fakahany E, Sidwell RW . Prenatal viral infection causes alterations in nNOS expression in developing mouse brains NeuroReport 2000 11: 1493–1496

    Article  CAS  PubMed  Google Scholar 

  34. Super H, DelRio JAA, Martinez A, Perez-Sust P et al. Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal–Retzius cells Cereb Cortex 2000 10: 602–613

    Article  CAS  PubMed  Google Scholar 

  35. Fukami E, Nakayama A, Sasaki J, Mimura S et al. Underexpression of neural cell adhesion molecule and neurotrophic factors in rat brain following thromboxane A2-induced intrauterine growth retardation Early Human Dev 2000 58: 101–110

    Article  CAS  Google Scholar 

  36. Alvarez-Dolado M . Thyroid hormone regulates reelin and dab-1 expression during brain development J Neurosci 1999 19: 6979–6993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bar I, Lambert de Rouvroit C, Royaux L, Krizman DB, Domencourt C, Ruella D et al. A YAC contig containing the reeler locus with preliminary characterization of candidate gene fragments Genomics 1995 26: 543–549

    Article  CAS  PubMed  Google Scholar 

  38. DeSilva U, D'Arcangelo G, Braden VY, Chen J, Miso GG, Curran T et al. The human reelin gene: isolation, sequencing, and mapping on chromosome 7 Genome Res 1997 7: 157–164

    Article  CAS  PubMed  Google Scholar 

  39. D'Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T . Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody J Neurosci 1997 17: 23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. DeBergeyck V, Naerhuyzen B, Goffinet AM, deRouvroit C . A panel of monoclonal antibodies against Reelin, the extracellular matrix protein defective in reeler mutant mice J Neurosci Meth 1998 82: 17–24

    Article  CAS  Google Scholar 

  41. Utsunomiya-Tate N, Kubo KI, Tate S-C, Kainosho M et al. Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody Proc Natl Acad Sci USA 2000 97: 9729–9734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Senzaki K, Ogawa M, Yagi T . Proteins of the CNR family are multiple receptors for Reelin Cell 1999 99: 635–647

    Article  CAS  PubMed  Google Scholar 

  43. D'Arcangelo G, Homayouni R, Keshvara L, Rice DS et al. Neuron 1999 24: 471–479

    Article  CAS  PubMed  Google Scholar 

  44. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A et al. Direct biding of Reelin to VLDL receptor and ApoE receptor 2 induces tyroene phosphorylation of disabled-1 and modulates tau phosphorylation Neuron 1999 24: 481–489

    Article  CAS  PubMed  Google Scholar 

  45. Dulabon L, Olson EC, Taglienti MG, Eisenhuth S et al. Reelin binds alpha 3 beta 1 integrin and inhibits neuronal migration Neuron 2000 27: 33–44

    Article  CAS  PubMed  Google Scholar 

  46. Stockinger W, Brandes C, Fasching D, Hermann M et al. The reelin receptor ApoER2 recruits JNK-interacting proteins-1 & -2 J Biol Chem 2000 275: 25625–25632

    Article  CAS  PubMed  Google Scholar 

  47. Sweet HO, Bronson RT, Johnson KR, Cook SA, Davisson MT . Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration Momm Genome 1998 7: 798–802

    Article  Google Scholar 

  48. Yoneshima H, Nagata E, Matsumoto M, Yamata K et al. A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen-reelin Neurosci Res 1997 29: 217–223

    Article  CAS  PubMed  Google Scholar 

  49. Howell BW, Hawkes R, Soriano P, Cooper IA . Neuronal position in the developing brain is regulated by mouse disabled-1 Nature 1997 389: 733–737

    Article  CAS  PubMed  Google Scholar 

  50. Cooper J, Howell BW . Lipoprotein receptors: signaling function in the brain? Cell 1999 97: 671–674

    Article  CAS  PubMed  Google Scholar 

  51. Grant SGN, Karl KA, Kiebler MA, Kandel ER . Focal adhesion kinase in the brain: novel subcellular localization and specific regulation by Fyn tyrosine kinase in mutant mice Genes & Dev 1995 9: 1909–1921

    Article  CAS  Google Scholar 

  52. Rodriguez MA, Pesold C, Liu WS, Kribo V, Guidotti A, Pappas GD et al. Colocalization of integrin receptors and reelin in dendritic spine post-synaptic densities of adult non-human primate cortex Proc Natl Acad Sci 2000 97: 3550–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J et al. Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction J Biol Chem 2000 275: 25616–25624

    Article  CAS  PubMed  Google Scholar 

  54. Xia Z, Dickens M, Raingeaud J, Davis RJ et al. Science 1995 270: 1326–1331

    Article  CAS  PubMed  Google Scholar 

  55. Kuan CY, Yang DO, SamantaRoy DR, Davis RJ et al. Neuron 1999 22: 667–676

    Article  CAS  PubMed  Google Scholar 

  56. Helbecque N, Amouyel P . Very low density lipoprotein in Alzheimer diseases Mic Res & Tech. 2000 50: 273–277

    Article  CAS  Google Scholar 

  57. Smallheiser NR, Costa E, Guidotti A, Impagnatiello F et al. Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells Proc Natl Acad Sci USA 2000 97: 1281–1286

    Article  Google Scholar 

  58. Buchaille R, Couble ML, Magloire H, Bleicher F . A substractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells Matrix Biol 2000 19: 421–430

    Article  CAS  PubMed  Google Scholar 

  59. Brunstrom JE, Gray-Swain MR, Pearlman AL . GABA and reelin are expressed by NT4-induced excess neurons in the marginal zone of developing neocortex Soc Neurosci Abs 1997 23: 80(40.13)

    Google Scholar 

  60. Hsueh Y-P, Wang T-F, Yang F-C, Sheng M . Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2 Nature 2000 404: 298–302

    Article  CAS  PubMed  Google Scholar 

  61. Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E et al. BDNF regulates reelin expression and Cajal–Retzius cell development in the cerebral cortex Neuron 1998 21: 305–315

    Article  CAS  PubMed  Google Scholar 

  62. Koibuchi N, Chin WW . Thyroid hormone and brain development TEM 2000 11: 123–128

    CAS  PubMed  Google Scholar 

  63. Obshima T, Ward JM, Nuh C-G, Longenecker G, Pant VHD, Brady RO et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis neuronal pathology and perinatal death Proc Natl Acad Sci 1998 93: 11173–11178

    Article  Google Scholar 

  64. Chae T, Kwon YT, Bronson R, Dikkos P, LiE, Tasi L-H . Mice lacking p35, a neuronal specific activator of CdK5, display cortical lamination defects, seizures and adult lethality Neuron 1996 13: 29–42

    Google Scholar 

  65. Persico AM, D'Agruma L, Maiorano M, Totaro A, Militerni R, Bravaccio C et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder Mol Psychiatry 2001 6: 150–159

    Article  CAS  PubMed  Google Scholar 

  66. Fatemi SH, Stary JM, Halt A, Realmuto G . Dysregulation of reelin and Bcl-2 in autistic cerebellum J Autism & Devel Dis (under review, special edition 2001)

  67. de Rouvroit CL, deBergeyck V, Cortvrindt C, Bar I, Eeckhout Y, Goffinet AM . Reelin, the extracellular matrix protein deficient in reeler mutant mice, is processed by a metalloproteinase Exp Neurol 1999 156: 214–217

    Article  Google Scholar 

Download references

Acknowledgements

The author's work is supported by grants from Stanley Foundation, National Alliance for Research in Affective Disorders and Schizophrenia, Minnesota Medical Foundation and Kunin Fund of St Paul Foundation. SH Fatemi is an established Phyllis and Perry Schwartz NARSAD investigator. The secretarial help of Ms Janet Holland is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S H Fatemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatemi, S. Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry 6, 129–133 (2001). https://doi.org/10.1038/sj.mp.4000129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000129

This article is cited by

Search

Quick links