Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours

Subjects

Abstract

In the adult mammalian brain, newborn granule cells are continuously integrated into hippocampal circuits, and the fine-tuning of this process is important for hippocampal function. Thus, the identification of factors that control adult neural stem cells (NSCs) maintenance, differentiation and integration is essential. Here we show that the deletion of the iron trafficking protein lipocalin-2 (LCN2) induces deficits in NSCs proliferation and commitment, with impact on the hippocampal-dependent contextual fear discriminative task. Mice deficient in LCN2 present an increase in the NSCs population, as a consequence of a G0/G1 cell cycle arrest induced by increased endogenous oxidative stress. Of notice, supplementation with the iron-chelating agent deferoxamine rescues NSCs oxidative stress, promotes cell cycle progression and improves contextual fear conditioning. LCN2 is, therefore, a novel key modulator of neurogenesis that, through iron, controls NSCs cell cycle progression and death, self-renewal, proliferation and differentiation and, ultimately, hippocampal function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ming GL, Song H . Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011; 70: 687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Deng W, Aimone JB, Gage FH . New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 2010; 11: 339–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 2009; 325: 210–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 2011; 472: 466–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 2006; 103: 17501–17506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  PubMed  Google Scholar 

  7. Horgusluoglu E, Nudelman K, Nho K, Saykin AJ . Adult neurogenesis and neurodegenerative diseases: a systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 2017; 174: 93–112.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang C . Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell 2014; 5: 750–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Benarroch EE . Brain iron homeostasis and neurodegenerative disease. Neurology 2009; 72: 1436–1440.

    Article  PubMed  Google Scholar 

  10. Richardson DR . Molecular mechanisms of iron uptake by cells and the use of iron chelators for the treatment of cancer. Curr Med Chem 2005; 12: 2711–2729.

    Article  CAS  PubMed  Google Scholar 

  11. Fu D, Richardson DR . Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion. Blood 2007; 110: 752–761.

    Article  CAS  PubMed  Google Scholar 

  12. Alcantara O, Kalidas M, Baltathakis I, Boldt DH . Expression of multiple genes regulating cell cycle and apoptosis in differentiating hematopoietic cells is dependent on iron. Exp Hematol 2001; 29: 1060–1069.

    Article  CAS  PubMed  Google Scholar 

  13. Dixon SJ, Stockwell BR . The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014; 10: 9–17.

    Article  CAS  PubMed  Google Scholar 

  14. Kamsler A, Segal M . Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 2003; 23: 269–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berr C . Cognitive impairment and oxidative stress in the elderly: results of epidemiological studies. Biofactors 2000; 13: 205–209.

    Article  CAS  PubMed  Google Scholar 

  16. Mariani E, Polidori MC, Cherubini A, Mecocci P . Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 827: 65–75.

    Article  CAS  PubMed  Google Scholar 

  17. Gemma C, Vila J, Bachstetter A, Bickford PC . Oxidative stress and the aging brain: from theory to prevention. In: Riddle DR (ed). Brain Aging: Models, Methods, and Mechanisms. Frontiers in Neuroscience: Boca Raton, FL, USA, 2007.

    Google Scholar 

  18. Garrick MD, Garrick LM . Cellular iron transport. Biochim Biophys Acta 2009; 1790: 309–325.

    Article  CAS  PubMed  Google Scholar 

  19. Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D et al. An iron delivery pathway mediated by a lipocalin. Mol Cell 2002; 10: 1045–1056.

    Article  CAS  PubMed  Google Scholar 

  20. Richardson DR . 24p3 and its receptor: dawn of a new iron age? Cell 2005; 123: 1175–1177.

    Article  CAS  PubMed  Google Scholar 

  21. Devireddy LR, Gazin C, Zhu X, Green MR . A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 2005; 123: 1293–1305.

    Article  CAS  PubMed  Google Scholar 

  22. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004; 432: 917–921.

    Article  CAS  PubMed  Google Scholar 

  23. Bao G, Clifton M, Hoette TM, Mori K, Deng SX, Qiu A et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol 2010; 6: 602–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mucha M, Skrzypiec AE, Schiavon E, Attwood BK, Kucerova E, Pawlak R . Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc Natl Acad Sci USA 2011; 108: 18436–18441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferreira AC, Pinto V, Da Mesquita S, Novais A, Sousa JC, Correia-Neves M et al. Lipocalin-2 is involved in emotional behaviors and cognitive function. Front Cell Neurosci 2013; 7: 122.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO . Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 2008; 26: 2361–2371.

    Article  CAS  PubMed  Google Scholar 

  27. Ip JP, Nocon AL, Hofer MJ, Lim SL, Muller M, Campbell IL . Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration. J Neuroinflammation 2011; 8: 124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marques F, Rodrigues AJ, Sousa JC, Coppola G, Geschwind DH, Sousa N et al. Lipocalin 2 is a choroid plexus acute-phase protein. J Cereb Blood Flow Metab 2008; 28: 450–455.

    Article  CAS  PubMed  Google Scholar 

  29. Wu B, Chen X, He B, Liu S, Li Y, Wang Q et al. ROS are critical for endometrial breakdown via NF-kappaB-COX-2 signaling in a female mouse menstrual-like model. Endocrinology 2014; 155: 3638–3648.

    Article  PubMed  Google Scholar 

  30. Kagoya Y, Yoshimi A, Tsuruta-Kishino T, Arai S, Satoh T, Akira S et al. JAK2V617F+ myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2. Blood 2014; 124: 2996–3006.

    Article  CAS  PubMed  Google Scholar 

  31. Lu W, Zhao M, Rajbhandary S, Xie F, Chai X, Mu J et al. Free iron catalyzes oxidative damage to hematopoietic cells/mesenchymal stem cells in vitro and suppresses hematopoiesis in iron overload patients. Eur J Haematol 2013; 91: 249–261.

    Article  CAS  PubMed  Google Scholar 

  32. Srinivasan G, Aitken JD, Zhang B, Carvalho FA, Chassaing B, Shashidharamurthy R et al. Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. J Immunol 2012; 189: 1911–1919.

    Article  CAS  PubMed  Google Scholar 

  33. Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S . Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS One 2014; 9: e85115.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nairz M, Theurl I, Schroll A, Theurl M, Fritsche G, Lindner E et al. Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood 2009; 114: 3642–3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferreira AC, Da Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA et al. From the periphery to the brain: Lipocalin-2, a friend or foe? Prog Neurobiol 2015; 131: 120–136.

    Article  CAS  PubMed  Google Scholar 

  36. Belarbi K, Rosi S . Modulation of adult-born neurons in the inflamed hippocampus. Front Cell Neurosci 2013; 7: 145.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Marques F, Mesquita SD, Sousa JC, Coppola G, Gao F, Geschwind DH et al. Lipocalin 2 is present in the EAE brain and is modulated by natalizumab. Front Cell Neurosci 2012; 6: 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song E, Fan P, Huang B, Deng HB, Cheung BM, Feletou M et al. Deamidated lipocalin-2 induces endothelial dysfunction and hypertension in dietary obese mice. J Am Heart Assoc 2014; 3: e000837.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011; 477: 90–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang TT, Leu D, Zou Y . Oxidative stress and redox regulation on hippocampal-dependent cognitive functions. Arch Biochem Biophys. 2015; 576: 2–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ran Q, Liang H, Gu M, Qi W, Walter CA, Roberts LJ 2nd et al. Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 2004; 279: 55137–55146.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AC Ferreira is a recipient of PhD fellowship and B Sampaio-Marques is a recipient of postdoctoral fellowship from the Foundation for Science and Technology (FCT, Portugal)/FEDER. F Marques is an assistant researcher IF/00231/2013 of the Foundation for Science and Technology (FCT, Portugal). This work was supported by Foundation for Science and Technology (FCT) and COMPETE through the project EXPL/NEU-OSD/2196/2013 (to F Marques) and by the Bial Foundation through Grant 217/12 (to JC Sousa). The work at ICVS/3B’s has been developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER), and funded by FEDER funds through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038. The work at CICS-UBI has the support of FEDER funds through the POCI - COMPETE 2020 - Operational Programme Competitiveness and Internationalisation in Axis I - Strengthening research, technological development and innovation (Project POCI-01-0145-FEDER-007491) and National Funds by Foundation for Science and Technology (Project UID/Multi /00709/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Marques.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, A., Santos, T., Sampaio-Marques, B. et al. Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Mol Psychiatry 23, 1031–1039 (2018). https://doi.org/10.1038/mp.2017.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.95

This article is cited by

Search

Quick links