Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Structural alterations within cerebellar circuitry are associated with general liability for common mental disorders

Abstract

Accumulating mental-health research encourages a shift in focus toward transdiagnostic dimensional features that are shared across categorical disorders. In support of this shift, recent studies have identified a general liability factor for psychopathology—sometimes called the ‘p factor’— that underlies shared risk for a wide range of mental disorders. Identifying neural correlates of this general liability would substantiate its importance in characterizing the shared origins of mental disorders and help us begin to understand the mechanisms through which the ‘p factor’ contributes to risk. Here we believe we first replicate the ‘p factor’ using cross-sectional data from a volunteer sample of 1246 university students, and then using high-resolution multimodal structural neuroimaging, we demonstrate that individuals with higher ‘p factor’ scores show reduced structural integrity of white matter pathways, as indexed by lower fractional anisotropy values, uniquely within the pons. Whole-brain analyses further revealed that higher ‘p factor’ scores are associated with reduced gray matter volume in the occipital lobe and left cerebellar lobule VIIb, which is functionally connected with prefrontal regions supporting cognitive control. Consistent with the preponderance of cerebellar afferents within the pons, we observed a significant positive correlation between the white matter integrity of the pons and cerebellar gray matter volume associated with higher ‘p factor’ scores. The results of our analyses provide initial evidence that structural alterations in corticocerebellar circuitry supporting core functions related to the basic integration, coordination and monitoring of information may contribute to a general liability for common mental disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Clark LA, Watson D, Reynolds S . Diagnosis and classification of psychopathology: challenges to the current system and future directions. Annu Rev Psychol 1995; 46: 121–153.

    Article  CAS  PubMed  Google Scholar 

  2. Newman DL, Moffitt TE, Caspi A, Silva PA . Comorbid mental disorders: implications for treatment and sample selection. J Abnorm Psychol 1998; 107: 305–311.

    Article  CAS  PubMed  Google Scholar 

  3. Kendler KS . Major depression and generalised anxiety disorder same genes, (partly) different environments—revisited. Br J Psychiatry Suppl 1996; 168: 68–75.

    Article  Google Scholar 

  4. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  5. Pettersson E, Larsson H, Lichtenstein P . Common psychiatric disorders share the same genetic origin: a multivariate sibling study of the Swedish population. Mol Psychiatry 2016; 21: 717–721.

    Article  CAS  PubMed  Google Scholar 

  6. Sartor CE, Grant JD, Bucholz KK, Madden PA, Heath AC, Agrawal A et al. Common genetic contributions to alcohol and cannabis use and dependence symptomatology. Alcohol Clin Exp Res 2010; 34: 545–554.

    Article  PubMed  Google Scholar 

  7. Barlow DH, Farchione TJ, Fairholme CP, Ellard KK, Boisseau CL, Allen LB et al. Unified Protocol for Transdiagnostic Treatment of Emotional Disorders: Therapist Guide. Oxford University Press: New York, NY, 2010.

    Book  Google Scholar 

  8. Vaswani M, Linda FK, Ramesh S . Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 85–102.

    Article  CAS  PubMed  Google Scholar 

  9. Achenbach TM, Edelbrock C . Behavioral problems and competencies reported by parents of normal and disturbed children aged 4 through 16. Monogr Soc Res Child Dev 1981; 46: 1–82.

    Article  CAS  PubMed  Google Scholar 

  10. Krueger RF, Markon KE . Reinterpreting comorbidity: a model-based approach to understanding and classifying psychopathology. Annu Rev Clin Psychol 2006; 2: 111–133.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krueger RF, Markon KE . A dimensional-spectrum model of psychopathology: progress and opportunities. Arch Gen Psychiatry 2011; 68: 10–11.

    Article  PubMed  Google Scholar 

  12. Lahey BB, Krueger RF, Rathouz PJ, Waldman ID, Zald DH . A hierarchical causal taxonomy of psychopathology across the life span. Psych Bull 2017; 143: 142–186.

    Article  Google Scholar 

  13. Wright AG, Krueger RF, Hobbs MJ, Markon KE, Eaton NR, Slade T . The structure of psychopathology: toward an expanded quantitative empirical model. J Abnorm Psychol 2013; 122: 281–294.

    Article  PubMed  Google Scholar 

  14. Lahey BB, Applegate B, Hakes JK, Zald DH, Hariri AR, Rathouz PJ . Is there a general factor of prevalent psychopathology during adulthood? J Abnorm Psychol 2012; 121: 971–977.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Caspi A, Houts RM, Belsky DW, Goldman-Mellor SJ, Harrington H, Israel S et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin Psychol Sci 2014; 2: 119–137.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deary IJ . Intelligence, A Very Short Introduction. Oxford University Press: Oxford, UK, 2001.

    Book  Google Scholar 

  17. Jensen AR . The g Factor. Praeger: New York, NY, USA, 1998.

    Google Scholar 

  18. Spearman C . 'General intelligence,' objectively determined and measured. Am J Psychol 1904; 15: 201–292.

    Article  Google Scholar 

  19. Blanco C, Wall MM, He JP, Krueger RF, Olfson M, Jin CJ et al. The space of common psychiatric disorders in adolescents: comorbidity structure and individual latent liabilities. J Am Acad Child Adolesc Psychiatry 2015; 54: 45–52.

    Article  PubMed  Google Scholar 

  20. Brodbeck J, Stulz N, Itten S, Regli D, Znoi H, Caspar F . The structure of psychopathological symptoms and the associations with DSM-diagnoses in treatment-seeking individuals. Compr Psychiatry 2014; 55: 714–726.

    Article  PubMed  Google Scholar 

  21. Laceulle OM, Vollebergh WAM, Ormel J . The structure of psychopathology in adolescence: replication of a general psychopathology factor in the TRAILS study. Clin Psychol Sci 2015; 3: 850–860.

    Article  Google Scholar 

  22. Lahey BB, Rathouz PJ, Keenan K, Stepp SD, Loeber R, Hipwell AE . Criterion validity of the general factor of psychopathology in a prospective study of girls. J Child Psychol Psychiatry 2015; 56: 415–422.

    Article  PubMed  Google Scholar 

  23. Olino TM, Doughtery LR, Bufferd SJ, Carlson GA, Klein DN . Testing models of psychopathology in preschool-aged children using a structured interview-based assessment. J Abnorm Child Psychol 2014; 42: 1201–1211.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Patalay P, Fonagy P, Deighton J, Belsky J, Vostanis P, Wolpert M . A general psychopathology factor in early adolescence. Br J Psychiatry 2015; 1: 15–22.

    Article  Google Scholar 

  25. Neumann A, Pappa I, Lahey BB, Verhulst F, Medina-Gomez C, Jaddoe V et al. Single nucleotide polymorphism heritability of a general psychopathology factor in children. J Am Acad Child Adolesc Psychiatry 2016; 55: 1038–1045.

    Article  PubMed  Google Scholar 

  26. Brown TA, Barlow DH . A proposal for a dimensional classification system based on the shared features of the DSM-IV anxiety and mood disorders: Implications for assessment and treatment. Psychol Assess 2009; 21: 256–271.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cuthbert BN . The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 2014; 13: 28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  28. McNally R, Robinaugh DJ, Wu GW, Wang L, Deserno MK, Borsboom D . Mental disorders as causal systems: a network approach to posttraumatic stress disorder. Clin Psychol Sci 2015; 3: 836–849.

    Article  Google Scholar 

  29. Deary IJ, Penke L, Johnson W . The neuroscience of human intelligence differences. Nat Rev Neurosci 2010; 11: 201–211.

    Article  CAS  PubMed  Google Scholar 

  30. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al. The Mini-International Neuropsychiatric Interview (M.I. N.I.): the development and validation of a structure diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998; 59: 22–33.

    PubMed  Google Scholar 

  31. Muthen LK, Muthen BO . MPlus User's Guide, 7th edn. Muthen & Muthen: Los Angeles, CA, USA, 1998–2013.

    Google Scholar 

  32. Wilcox RR Winsorized Robust Measures. Wiley StatsRef: Statistics References Online, 2005.

  33. Middleton FA, Strick PL . Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 2001; 21: 700–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jahanshad N, Kochunov PV, Sprooten E, Mandl RC, Nichols TE, Almasy L et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage 2013; 81: 455–469.

    Article  PubMed  Google Scholar 

  35. Diedrichsen J . A spatially unbiased atlas template of the human cerebellum. Neuroimage 2006; 33: 127–138.

    Article  PubMed  Google Scholar 

  36. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT . The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106: 2322–2345.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106: 1125–65.

    Article  PubMed  Google Scholar 

  38. Buckner RL . The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 2013; 80: 807–815.

    Article  CAS  PubMed  Google Scholar 

  39. D'Angelo E, Casali S . Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits 2013; 6: 1–23.

    Article  Google Scholar 

  40. Keren-Happuch E, Chen SH, Ho MH, Desmond JE . A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp 2014; 35: 593–615.

    Article  Google Scholar 

  41. Strick PL, Dum RP, Fiez JA . Cerebellum and nonmotor function. Annu Rev Neurosci 2009; 32: 413–434.

    Article  CAS  PubMed  Google Scholar 

  42. Berman KF, Ostrem JL, Randolph C, Gold J, Goldberg TE, Coppola R et al. Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: a positron emission tomography study. Neuropsychologia 1995; 33: 1027–1046.

    Article  CAS  PubMed  Google Scholar 

  43. Desmond JE, Gabrieli JDE, Wagner AD, Ginier BL, Glover GH . Lobular patterns of cerebellar activation in verbal working memory and finger tapping tasks as revealed by functional MRI. J Neurosci 1997; 17: 9675–9685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci 2009; 34: 418–432.

    PubMed  PubMed Central  Google Scholar 

  45. Sacchetti B, Scelfo B, Strata P . The cerebellum: synaptic changes and fear conditioning. Neuroscientist 2005; 11: 217–227.

    Article  PubMed  Google Scholar 

  46. Ito M . Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 2008; 9: 304–313.

    Article  CAS  PubMed  Google Scholar 

  47. Ito M . Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci 1993; 16: 448–450.

    Article  CAS  PubMed  Google Scholar 

  48. Ghez C. The cerebellum. In: Kandel ER, Schwartz JH, Jessell TM (eds.) Principles of Neural Science Appleton & Lange: Norwalk, CT, USA, 1991, pp 626–646.

    Google Scholar 

  49. Bauman ML, Kemper TL . Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 2005; 23: 183–187.

    Article  PubMed  Google Scholar 

  50. Lazaro L, Calvo A, Ortiz AG, Ortiz AE, Morer A, Moreno E et al. Microstructural brain abnormalities and symptom dimensions in child and adolescent patients with obsessive-compulsive disorder: a diffusion tensor imaging study. Depress Anxiety 2014; 31: 1007–1017.

    Article  PubMed  Google Scholar 

  51. Mills NP, DelBello MP, Adler CM, Strakowski SM . MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiatry 2005; 162: 1530–1532.

    Article  PubMed  Google Scholar 

  52. Peng J, Liu J, Nie B, Li Y, Shan B, Wang G et al. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol 2011; 80: 395–399.

    Article  PubMed  Google Scholar 

  53. Kyriakopoulos M, Vyasa NS, Barker GJ, Chitnis XA, Frangou S . A diffusion tensor imaging study of white matter in early-onset schizophrenia. Biol Psychiatry 2008; 63: 519–523.

    Article  PubMed  Google Scholar 

  54. Bernard JA, Mittal VA . Dysfunctional activation of the cerebellum in schizophrenia: a functional neuroimaging meta-analysis. Clin Psychol Sci 2015; 3: 545–566.

    Article  PubMed  Google Scholar 

  55. Schmahmann JD . Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004; 16: 367–378.

    Article  PubMed  Google Scholar 

  56. Schmahmann JD, Weilburg JB, Sherman JC . The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum 2007; 6: 254–267.

    Article  PubMed  Google Scholar 

  57. Andreasen NC, Paradiso S, O'Leary DS . 'Cognitive dysmetria' as an integrative theory of schizophrenia: a dysfunction in cortical–subcortical–cerebellar circuitry? Schizophr Bull 1998; 24: 203–218.

    Article  CAS  PubMed  Google Scholar 

  58. Stoodley CJ, Schmahmann JD . Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 2009; 44: 489–501.

    Article  PubMed  Google Scholar 

  59. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 2008; 40: 570–582.

    Article  PubMed  Google Scholar 

  60. Bogousslavsky J, Miklossy J, Deruaz JP, Assal G, Regli F . Lingual and fusiform gyri in visual processing: a clinico-pathologic study of superior altitudinal hemianopia. J Neurol Neurosurg Psychiatry 1987; 50: 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Conrad CD, Stumpf WE . Direct visual input to the limbic system: crossed retinal projections to the nucleus anterodorsalis thalami in the tree shrew. Exp Brain Res 1975; 23: 141–149.

    Article  CAS  PubMed  Google Scholar 

  62. Du MY, Wu QZ, Yue Q, Li J, Liao Y, Kuang WH et al. Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36: 11–16.

    Article  PubMed  Google Scholar 

  63. Yang X, Ma X, Huang B, Sun G, Zhao L, Lin D et al. Gray matter volume abnormalities were associated with sustained attention in unmedicated major depression. Compr Psychiatry 2015; 63: 71–79.

    Article  PubMed  Google Scholar 

  64. Jung J, Kang J, Won E, Nam K, Lee MS, Tae WS et al. Impact of lingual gyrus volume on antidepressant response and neurocognitive functions in major depressive disorder: a voxel-based morphometry study. J Affect Disord 2014; 169: 179–187.

    Article  PubMed  Google Scholar 

  65. Hopfinger JB, Buonocore MH, Mangun GR . The neural mechanisms of top-down attentional control. Nat Neurosci 2000; 3: 284–291.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Duke Neurogenetics Study participants and the staff of the Laboratory of NeuroGenetics. The Duke Neurogenetics Study received support from Duke University as well as US-National Institutes of Health Grants R01DA033369 and R01DA031579. ALR was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1106401. ARK, RH, AC, TEM and ARH received further support from US-National Institutes of Health Grant R01AG049789.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A L Romer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romer, A., Knodt, A., Houts, R. et al. Structural alterations within cerebellar circuitry are associated with general liability for common mental disorders. Mol Psychiatry 23, 1084–1090 (2018). https://doi.org/10.1038/mp.2017.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.57

This article is cited by

Search

Quick links