Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Brain structural and functional signatures of impulsive–compulsive behaviours in Parkinson’s disease

Abstract

This study assessed brain structural and functional alterations in patients with Parkinson’s disease and impulsive–compulsive behaviours (PD-ICB) compared with controls and PD no-ICB cases. Eighty-five PD patients (35 PD-ICB) and 50 controls were recruited. All subjects underwent three-dimensional T1-weighted, diffusion tensor (DT), and resting state functional magnetic resonance imaging (RS fMRI). We assessed cortical thickness with surface-based morphometry, subcortical volumes using FIRST, DT MRI metrics using region of interest and tractography approaches, and RS fMRI using a model free approach. Compared with controls, both PD groups showed a pattern of brain structural alterations in the basal ganglia (more evident in PD no-ICB patients), sensorimotor and associative systems. Compared with PD no-ICB, PD-ICB cases showed left precentral and superior frontal cortical thinning, and motor and extramotor white matter tract damage. Compared with controls, all patients had an increased functional connectivity within the visual network. Additionally, PD no-ICB showed increased functional connectivity of bilateral precentral and postcentral gyri within the sensorimotor network compared with controls and PD-ICB. Severity and duration of PD-ICB modulated the functional connectivity between sensorimotor, visual and cognitive networks. Relative to PD no-ICB, PD-ICB patients were characterised by a more severe involvement of frontal, meso-limbic and motor circuits. These data suggest ICB in PD as the result of a disconnection between sensorimotor, associative and cognitive networks with increasing motor impairment, psychiatric symptoms, and ICB duration. These findings may have important implications in understanding the neural substrates underlying ICB in PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Association AP Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Press: Washington, DC, 2000.

  2. Association AP Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Publishing: Washington, DC, 2013.

  3. Callesen MB, Scheel-Kruger J, Kringelbach ML, Moller A . A systematic review of impulse control disorders in Parkinson's disease. J Parkinsons Dis 2013; 3: 105–138.

    CAS  PubMed  Google Scholar 

  4. Weintraub D, David AS, Evans AH, Grant JE, Stacy M . Clinical spectrum of impulse control disorders in Parkinson's disease. Mov Disord 2015; 30: 121–127.

    Article  CAS  PubMed  Google Scholar 

  5. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 2010; 67: 589–595.

    Article  PubMed  Google Scholar 

  6. Jaakkola E, Kaasinen V, Siri C, Martikainen K, Cilia R, Niemela S et al. Impulse control disorders are associated with multiple psychiatric symptoms in Parkinson's disease. J Parkinsons Dis 2014; 4: 507–515.

    CAS  PubMed  Google Scholar 

  7. Voon V, Sohr M, Lang AE, Potenza MN, Siderowf AD, Whetteckey J et al. Impulse control disorders in Parkinson disease: a multicenter case—control study. Ann Neurol 2011; 69: 986–996.

    Article  PubMed  Google Scholar 

  8. Biundo R, Formento-Dojot P, Facchini S, Vallelunga A, Ghezzo L, Foscolo L et al. Brain volume changes in Parkinson's disease and their relationship with cognitive and behavioural abnormalities. J Neurol Sci 2011; 310: 64–69.

    Article  PubMed  Google Scholar 

  9. Djamshidian A, Jha A, O'Sullivan SS, Silveira-Moriyama L, Jacobson C, Brown P et al. Risk and learning in impulsive and nonimpulsive patients with Parkinson's disease. Mov Disord 2010; 25: 2203–2210.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Santangelo G, Vitale C, Trojano L, Verde F, Grossi D, Barone P . Cognitive dysfunctions and pathological gambling in patients with Parkinson's disease. Mov Disord 2009; 24: 899–905.

    Article  PubMed  Google Scholar 

  11. Vitale C, Santangelo G, Trojano L, Verde F, Rocco M, Grossi D et al. Comparative neuropsychological profile of pathological gambling, hypersexuality, and compulsive eating in Parkinson's disease. Mov Disord 2011; 26: 830–836.

    Article  PubMed  Google Scholar 

  12. Djamshidian A, O'Sullivan SS, Lees A, Averbeck BB . Stroop test performance in impulsive and non impulsive patients with Parkinson's disease. Parkinsonism Relat Disord 2011; 17: 212–214.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siri C, Cilia R, De Gaspari D, Canesi M, Meucci N, Zecchinelli AL et al. Cognitive status of patients with Parkinson's disease and pathological gambling. J Neurol 2010; 257: 247–252.

    Article  PubMed  Google Scholar 

  14. Cerasa A, Salsone M, Nigro S, Chiriaco C, Donzuso G, Bosco D et al. Cortical volume and folding abnormalities in Parkinson's disease patients with pathological gambling. Parkinsonism Relat Disord 2014; 20: 1209–1214.

    Article  PubMed  Google Scholar 

  15. Biundo R, Weis L, Facchini S, Formento-Dojot P, Vallelunga A, Pilleri M et al. Patterns of cortical thickness associated with impulse control disorders in Parkinson's disease. Mov Disord 2015; 30: 688–695.

    Article  PubMed  Google Scholar 

  16. Tessitore A, Santangelo G, De Micco R, Vitale C, Giordano A, Raimo S et al. Cortical thickness changes in patients with Parkinson's disease and impulse control disorders. Parkinsonism Relat Disord 2016; 24: 119–125.

    Article  PubMed  Google Scholar 

  17. Pellicano C, Niccolini F, Wu K, O'Sullivan SS, Lawrence AD, Lees AJ et al. Morphometric changes in the reward system of Parkinson's disease patients with impulse control disorders. J Neurol 2015; 262: 2653–2661.

    Article  CAS  PubMed  Google Scholar 

  18. Yoo HB, Lee JY, Lee JS, Kang H, Kim YK, Song IC et al. Whole-brain diffusion-tensor changes in parkinsonian patients with impulse control disorders. J Clin Neurol 2015; 11: 42–47.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carriere N, Lopes R, Defebvre L, Delmaire C, Dujardin K . Impaired corticostriatal connectivity in impulse control disorders in Parkinson disease. Neurology 2015; 84: 2116–2123.

    Article  CAS  PubMed  Google Scholar 

  20. Hughes AJ, Daniel SE, Kilford L, Lees AJ . Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McElroy SL, Keck PE Jr., Pope HG Jr, Smith JM, Strakowski SM . Compulsive buying: a report of 20 cases. J Clin Psychiatry 1994; 55: 242–248.

    CAS  PubMed  Google Scholar 

  22. Voon V, Hassan K, Zurowski M, de Souza M, Thomsen T, Fox S et al. Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology 2006; 67: 1254–1257.

    Article  CAS  PubMed  Google Scholar 

  23. Evans AH, Katzenschlager R, Paviour D, O'Sullivan JD, Appel S, Lawrence AD et al. Punding in Parkinson's disease: its relation to the dopamine dysregulation syndrome. Mov Disord 2004; 19: 397–405.

    Article  PubMed  Google Scholar 

  24. Giovannoni G, O'Sullivan JD, Turner K, Manson AJ, Lees AJ . Hedonistic homeostatic dysregulation in patients with Parkinson's disease on dopamine replacement therapies. J Neurol Neurosurg Psychiatry 2000; 68: 423–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weintraub D, Hoops S, Shea JA, Lyons KE, Pahwa R, Driver-Dunckley ED et al. Validation of the questionnaire for impulsive-compulsive disorders in Parkinson's disease. Mov Disord 2009; 24: 1461–1467.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martinez-Martin P, Leentjens AF, de Pedro-Cuesta J, Chaudhuri KR, Schrag AE, Weintraub D . Accuracy of screening instruments for detection of neuropsychiatric syndromes in Parkinson's disease. Mov Disord 2016; 31: 270–279.

    Article  PubMed  Google Scholar 

  27. Weintraub D, Mamikonyan E, Papay K, Shea JA, Xie SX, Siderowf A . Questionnaire for impulsive-compulsive disorders in Parkinson's disease-rating scale. Mov Disord 2012; 27: 242–247.

    Article  PubMed  Google Scholar 

  28. Hoehn MM, Yahr MD . Parkinsonism: onset, progression and mortality. Neurology 1967; 17: 427–442.

    Article  CAS  PubMed  Google Scholar 

  29. Fahn S, Elton RL Committee motUD. Unified Parkinson's disease rating scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB (eds). Recent Developments in Parkinson's Disease II. MacMillan: New York, 1987, pp 153–163.

    Google Scholar 

  30. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov Disord 2012; 27: 349–356.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fischl B, Dale AM . Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 2000; 97: 11050–11055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW . Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 2007; 34: 144–155.

    Article  CAS  PubMed  Google Scholar 

  33. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE et al. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 2009; 106: 13040–13045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamilton M . A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Starkstein SE, Mayberg HS, Preziosi TJ, Andrezejewski P, Leiguarda R, Robinson RG . Reliability, validity, and clinical correlates of apathy in Parkinson's disease. J Neuropsychiatry Clin Neurosci 1992; 4: 134–139.

    Article  CAS  PubMed  Google Scholar 

  36. Hamilton M . The assessment of anxiety states by rating. Br J Med Psychol 1959; 32: 50–55.

    Article  CAS  PubMed  Google Scholar 

  37. Kostic VS, Filippi M . Neuroanatomical correlates of depression and apathy in Parkinson's disease: magnetic resonance imaging studies. J Neurol Sci 2011; 310: 61–63.

    Article  PubMed  Google Scholar 

  38. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E . Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003; 24: 197–211.

    Article  PubMed  Google Scholar 

  39. Brooks DJ, Piccini P . Imaging in Parkinson's disease: the role of monoamines in behavior. Biol Psychiatry 2006; 59: 908–918.

    Article  CAS  PubMed  Google Scholar 

  40. Houk JC, Wise SP . Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 1995; 5: 95–110.

    Article  CAS  PubMed  Google Scholar 

  41. Tessitore A, Hariri AR, Fera F, Smith WG, Chase TN, Hyde TM et al. Dopamine modulates the response of the human amygdala: a study in Parkinson's disease. J Neurosci 2002; 22: 9099–9103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Drevets WC . Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001; 11: 240–249.

    Article  CAS  PubMed  Google Scholar 

  43. Adler CH, Beach TG . Neuropathological basis of nonmotor manifestations of Parkinson's disease. Mov Disord 2016; 31: 1114–1119.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jahfari S, Waldorp L, van den Wildenberg WP, Scholte HS, Ridderinkhof KR, Forstmann BU . Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J Neurosci 2011; 31: 6891–6899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Helmich RC, de Lange FP, Bloem BR, Toni I . Cerebral compensation during motor imagery in Parkinson's disease. Neuropsychologia 2007; 45: 2201–2215.

    Article  PubMed  Google Scholar 

  46. Baggio HC, Segura B, Sala-Llonch R, Marti MJ, Valldeoriola F, Compta Y et al. Cognitive impairment and resting-state network connectivity in Parkinson's disease. Hum Brain Mapp 2015; 36: 199–212.

    Article  PubMed  Google Scholar 

  47. Olde Dubbelink KT, Schoonheim MM, Deijen JB, Twisk JW, Barkhof F, Berendse HW . Functional connectivity and cognitive decline over 3 years in Parkinson disease. Neurology 2014; 83: 2046–2053.

    Article  CAS  PubMed  Google Scholar 

  48. Tessitore A, Giordano A, De Micco R, Russo A, Tedeschi G . Sensorimotor connectivity in Parkinson's disease: the role of functional neuroimaging. Front Neurol 2014; 5: 180.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I . Spatial remapping of cortico-striatal connectivity in Parkinson's disease. Cereb Cortex 2010; 20: 1175–1186.

    Article  PubMed  Google Scholar 

  50. Luo C, Guo X, Song W, Chen Q, Yang J, Gong Q et al. The trajectory of disturbed resting-state cerebral function in Parkinson's disease at different Hoehn and Yahr stages. Hum Brain Mapp 2015; 36: 3104–3116.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Baggio HC, Sala-Llonch R, Segura B, Marti MJ, Valldeoriola F, Compta Y et al. Functional brain networks and cognitive deficits in Parkinson's disease. Hum Brain Mapp 2014; 35: 4620–4634.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Delgado-Alvarado M, Gago B, Navalpotro-Gomez I, Jimenez-Urbieta H, Rodriguez-Oroz MC . Biomarkers for dementia and mild cognitive impairment in Parkinson's disease. Mov Disord 2016; 31: 861–881.

    Article  PubMed  Google Scholar 

  53. Zimmerman M, Martinez JH, Young D, Chelminski I, Dalrymple K . Severity classification on the Hamilton Depression Rating Scale. J Affect Disord 2013; 150: 384–388.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially funded by a grant from the Ministry of Education and Science, Republic of Serbia (project 175090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Filippi.

Ethics declarations

Competing interests

FA is Section Editor of NeuroImage: Clinical and serves on the editorial board of the Journal of Neurology; has received speaker honoraria from EXCEMED—Excellence in Medical Education; and receives research supports from the Italian Ministry of Health, AriSLA (Fondazione Italiana di Ricerca per la SLA) and the European Research Council. EC has received research support from the Italian Ministry of Health. VM has received research supports from the Ministry of Education and Science, Republic of Serbia. AI has received research supports from AriSLA—Fondazione Italiana di Ricerca per la Sclerosi Laterale Amiotrofica. MC has received compensation for consulting and/or serving on advisory boards from Teva Pharmaceuticals and Biogen Idec. VSK serves on the editorial board of the Journal of Neurology; and has received research grants from Ministry of Education and Science, Republic of Serbia and the Serbian Academy of Science and Arts; he receives research supports from Valeant, Stada, Novartis and Boehriner Ingelheim, and speaker honoraria from Novartis and Boehringer Ingelheim. MF is Editor-in-Chief of the Journal of Neurology; serves on a scientific advisory board for Teva Pharmaceutical Industries; has received compensation for consulting services and/or speaking activities from Biogen Idec, ExceMED, Novartis and Teva Pharmaceutical Industries; and receives research support from Biogen Idec, Teva Pharmaceutical Industries, Novartis, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla, Cure PSP, Alzheimer's Drug Discovery Foundation (ADDF), the Jacques and Gloria Gossweiler Foundation (Switzerland) and ARiSLA (Fondazione Italiana di Ricerca per la SLA). The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imperiale, F., Agosta, F., Canu, E. et al. Brain structural and functional signatures of impulsive–compulsive behaviours in Parkinson’s disease. Mol Psychiatry 23, 459–466 (2018). https://doi.org/10.1038/mp.2017.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.18

This article is cited by

Search

Quick links