Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry

Abstract

A great deal of interest in psychiatric research is currently centered upon the pathogenic role of inflammatory processes. Positron emission tomography (PET) using radiolabeled ligands selective for the 18 kDa translocator protein (TSPO) has become the most widely used technique to assess putative neuroimmune abnormalities in vivo. Originally used to detect discrete neurotoxic damages, TSPO has generally turned into a biomarker of ‘neuroinflammation’ or ‘microglial activation’. Psychiatric research has mostly accepted these denotations of TSPO, even if they may be inadequate and misleading under many pathological conditions. A reliable and neurobiologically meaningful diagnosis of ‘neuroinflammation’ or ‘microglial activation’ is unlikely to be achieved by the sole use of TSPO PET imaging. It is also very likely that the pathological meanings of altered TSPO binding or expression are disease-specific, and therefore, not easily generalizable across different neuropathologies or inflammatory conditions. This difficulty is intricately linked to the varying (and still ill-defined) physiological functions and cellular expression patterns of TSPO in health and disease. While altered TSPO binding or expression may indeed mirror ongoing neuroinflammatory processes in some cases, it may reflect other pathophysiological processes such as abnormalities in cell metabolism, energy production and oxidative stress in others. Hence, the increasing popularity of TSPO PET imaging has paradoxically introduced substantial uncertainty regarding the nature and meaning of neuroinflammatory processes and microglial activation in psychiatry, and likely in other neuropathological conditions as well. The ambiguity of conceiving TSPO simply as a biomarker of ‘neuroinflammation’ or ‘microglial activation’ calls for alternative interpretations and complimentary approaches. Without the latter, the ongoing scientific efforts and excitement surrounding the role of the neuroimmune system in psychiatry may not turn into therapeutic hope for affected individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Galea I, Bechmann I, Perry VH . What is immune privilege (not)? Trends Immunol 2007; 28: 12–18.

    CAS  PubMed  Google Scholar 

  2. Burda JE, Sofroniew MV . Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 2014; 81: 229–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Marques-Deak A, Cizza G, Sternberg E . Brain-immune interactions and disease susceptibility. Mol Psychiatry 2005; 10: 239–250.

    CAS  PubMed  Google Scholar 

  4. Brenhouse HC, Schwarz JM . Immunoadolescence: neuroimmune development and adolescent behavior. Neurosci Biobehav Rev 2016; 70: 288–299.

    PubMed  PubMed Central  Google Scholar 

  5. Fung TC, Olson CA, Hsiao EY . Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017; 20: 145–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW . From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9: 46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Muller N, Schwarz MJ . The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007; 12: 988–1000.

    CAS  PubMed  Google Scholar 

  8. Miller AH, Raison CL . The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 2016; 16: 22–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Du Preez A, Leveson J, Zunszain PA, Pariante CM . Inflammatory insults and mental health consequences: does timing matter when it comes to depression? Psychol Med 2016; 46: 2041–2057.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Muller N, Riedel M, Gruber R, Ackenheil M, Schwarz MJ . The immune system and schizophrenia. An integrative view. Ann NY Acad Sci 2000; 917: 456–467.

    CAS  PubMed  Google Scholar 

  11. Yolken RH, Torrey EF . Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry 2008; 13: 470–479.

    CAS  PubMed  Google Scholar 

  12. Horvath S, Mirnics K . Immune system disturbances in schizophrenia. Biol Psychiatry 2014; 75: 316–323.

    CAS  PubMed  Google Scholar 

  13. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB . Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2015; 2: 258–270.

    PubMed  PubMed Central  Google Scholar 

  14. Ashwood P, Wills S, Van de Water J . The immune response in autism: a new frontier for autism research. J Leukoc Biol 2006; 80: 1–15.

    CAS  PubMed  Google Scholar 

  15. Estes ML, McAllister AK . Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015; 16: 469–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Meltzer A, Van de Water J . The role of the immune system in autism spectrum disorder. Neuropsychopharmacology 2017; 42: 284–298.

    CAS  PubMed  Google Scholar 

  17. Watkins CC, Sawa A, Pomper MG . Glia and immune cell signaling in bipolar disorder: insights from neuropharmacology and molecular imaging to clinical application. Transl Psychiatry 2014; 4: e350.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang AK, Miller BJ . Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull 2017 (in press).

  19. Isgren A, Sellgren C, Ekman CJ, Holmen-Larsson J, Blennow K, Zetterberg H et al. Markers of neuroinflammation and neuronal injury in bipolar disorder: relation to prospective clinical outcomes. Brain Behav Immun 2017; 65: 195–201.

    PubMed  Google Scholar 

  20. Graeber MB . Neuroinflammation: no rose by any other name. Brain Pathol 2014; 24: 620–622.

    PubMed  PubMed Central  Google Scholar 

  21. Masgrau R, Guaza C, Ransohoff RM, Galea E . Should we stop saying 'glia' and 'neuroinflammation'? Trends Mol Med 2017; 23: 486–500.

    CAS  PubMed  Google Scholar 

  22. Ransohoff RM, Engelhardt B . The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012; 12: 623–635.

    CAS  PubMed  Google Scholar 

  23. Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA et al. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 2011; 16: 751–762.

    CAS  PubMed  Google Scholar 

  24. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18: 206–214.

    CAS  PubMed  Google Scholar 

  25. Trepanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP . Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 2016; 21: 1009–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. van Kesteren CF, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 2017; 7: e1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cotel MC, Lenartowicz EM, Natesan S, Modo MM, Cooper JD, Williams SC et al. Microglial activation in the rat brain following chronic antipsychotic treatment at clinically relevant doses. Eur Neuropsychopharmacol 2015; 25: 2098–2107.

    CAS  PubMed  Google Scholar 

  28. Kalkman HO, Feuerbach D . Antidepressant therapies inhibit inflammation and microglial M1-polarization. Pharmacol Ther 2016; 163: 82–93.

    CAS  PubMed  Google Scholar 

  29. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatric Res 2008; 42: 151–157.

    Google Scholar 

  30. Purkayastha S, Cai D . Neuroinflammatory basis of metabolic syndrome. Mol Metab 2013; 2: 356–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu GJ, Middleton RJ, Hatty CR, Kam WW, Chan R, Pham T et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 2014; 24: 631–653.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Benavides J, Fage D, Carter C, Scatton B . Peripheral type benzodiazepine binding sites are a sensitive indirect index of neuronal damage. Brain Res 1987; 421: 167–172.

    CAS  PubMed  Google Scholar 

  33. Miyazawa N, Diksic M, Yamamoto Y . Chronological study of peripheral benzodiazepine binding sites in the rat brain stab wounds using [3H] PK-11195 as a marker for gliosis. Acta Neurochir 1995; 137: 207–216.

    CAS  PubMed  Google Scholar 

  34. Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BN et al. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: recent developments in positron emission tomography. Biochim Biophys Acta 2016; 1862: 425–441.

    CAS  PubMed  Google Scholar 

  35. Yeliseev AA, Kaplan S . A sensory transducer homologous to the mammalian peripheral-type benzodiazepine receptor regulates photosynthetic membrane complex formation in Rhodobacter sphaeroides 2.4.1. J Biol Chem 1995; 270: 21167–21175.

    CAS  PubMed  Google Scholar 

  36. Selvaraj V, Stocco DM . The changing landscape in translocator protein (TSPO) function. Trends Endocrinol Metab 2015; 26: 341–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guillaumot D, Guillon S, Deplanque T, Vanhee C, Gumy C, Masquelier D et al. The Arabidopsis TSPO-related protein is a stress and abscisic acid-regulated, endoplasmic reticulum-Golgi-localized membrane protein. Plant J 2009; 60: 242–256.

    CAS  PubMed  Google Scholar 

  38. Yeliseev AA, Krueger KE, Kaplan S . A mammalian mitochondrial drug receptor functions as a bacterial "oxygen" sensor. Proc Natl Acad Sci USA 1997; 94: 5101–5106.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Selvaraj V, Stocco DM, Tu LN . Minireview: translocator protein (TSPO) and steroidogenesis: a reappraisal. Mol Endocrinol 2015; 29: 490–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tu LN, Zhao AH, Hussein M, Stocco DM, Selvaraj V . Translocator protein (TSPO) affects mitochondrial fatty acid oxidation in steroidogenic cells. Endocrinology 2016; 157: 1110–1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Notter T, Coughlin JM, Gschwind T, Weber-Stadlbauer U, Wang Y, Kassiou M et al. Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia. Mol Psychiatry 2017 e-pub ahead of print 17 January 2017; 10.1038/mp.2016.248.

  42. Anholt RR, Pedersen PL, De Souza EB, Snyder SH . The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J Biol Chem 1986; 261: 576–583.

    CAS  PubMed  Google Scholar 

  43. Liu GJ, Middleton RJ, Banati RB . Subcellular distribution of the 18kDa translocator protein and transcript variant PBR-S in human cells. Gene 2017; 613: 45–56.

    CAS  PubMed  Google Scholar 

  44. Korkhov VM, Sachse C, Short JM, Tate CG . Three-dimensional structure of TspO by electron cryomicroscopy of helical crystals. Structure 2010; 18: 677–687.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jaremko L, Jaremko M, Giller K, Becker S, Zweckstetter M . Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 2014; 343: 1363–1366.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lacapere JJ, Delavoie F, Li H, Peranzi G, Maccario J, Papadopoulos V et al. Structural and functional study of reconstituted peripheral benzodiazepine receptor. Biochem Biophys Res Commun 2001; 284: 536–541.

    CAS  PubMed  Google Scholar 

  47. Li H, Papadopoulos V . Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 1998; 139: 4991–4997.

    CAS  PubMed  Google Scholar 

  48. Mukhin AG, Papadopoulos V, Costa E, Krueger KE . Mitochondrial benzodiazepine receptors regulate steroid biosynthesis. Proc Natl Acad Sci USA 1989; 86: 9813–9816.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Papadopoulos V, Mukhin AG, Costa E, Krueger KE . The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis. J Biol Chem 1990; 265: 3772–3779.

    CAS  PubMed  Google Scholar 

  50. Hauet T, Yao ZX, Bose HS, Wall CT, Han Z, Li W et al. Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into leydig cell mitochondria. Mol Endocrinol 2005; 19: 540–554.

    CAS  PubMed  Google Scholar 

  51. Papadopoulos V, Miller WL . Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab 2012; 26: 771–790.

    CAS  PubMed  Google Scholar 

  52. Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Garnier M et al. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids 1997; 62: 21–28.

    CAS  PubMed  Google Scholar 

  53. Gut P, Zweckstetter M, Banati RB . Lost in translocation: the functions of the 18-kD translocator protein. Trends Endocrinol Metab 2015; 26: 349–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Banati RB, Middleton RJ, Chan R, Hatty CR, Kam WW, Quin C et al. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nat Commun 2014; 5: 5452.

    PubMed  Google Scholar 

  55. Tu LN, Morohaku K, Manna PR, Pelton SH, Butler WR, Stocco DM et al. Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. J Biol Chem 2014; 289: 27444–27454.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang H, Zhai K, Xue Y, Yang J, Yang Q, Fu Y et al. Global deletion of TSPO does not affect the viability and gene expression profile. PLoS ONE 2016; 11: e0167307.

    PubMed  PubMed Central  Google Scholar 

  57. Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W, Selvaraj V . Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. Endocrinology 2014; 155: 89–97.

    PubMed  Google Scholar 

  58. Tu LN, Zhao AH, Stocco DM, Selvaraj V . PK11195 effect on steroidogenesis is not mediated through the translocator protein (TSPO). Endocrinology 2015; 156: 1033–1039.

    CAS  PubMed  Google Scholar 

  59. Chelli B, Falleni A, Salvetti F, Gremigni V, Lucacchini A, Martini C . Peripheral-type benzodiazepine receptor ligands: mitochondrial permeability transition induction in rat cardiac tissue. Biochem Pharmacol 2001; 61: 695–705.

    CAS  PubMed  Google Scholar 

  60. Kugler W, Veenman L, Shandalov Y, Leschiner S, Spanier I, Lakomek M et al. Ligands of the mitochondrial 18 kDa translocator protein attenuate apoptosis of human glioblastoma cells exposed to erucylphosphohomocholine. Cell Oncol 2008; 30: 435–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Costa B, Da Pozzo E, Giacomelli C, Taliani S, Bendinelli S, Barresi E et al. TSPO ligand residence time influences human glioblastoma multiforme cell death/life balance. Apoptosis 2015; 20: 383–398.

    CAS  PubMed  Google Scholar 

  62. Levin E, Premkumar A, Veenman L, Kugler W, Leschiner S, Spanier I et al. The peripheral-type benzodiazepine receptor and tumorigenicity: isoquinoline binding protein (IBP) antisense knockdown in the C6 glioma cell line. Biochemistry 2005; 44: 9924–9935.

    CAS  PubMed  Google Scholar 

  63. Shoukrun R, Veenman L, Shandalov Y, Leschiner S, Spanier I, Karry R et al. The 18-kDa translocator protein, formerly known as the peripheral-type benzodiazepine receptor, confers proapoptotic and antineoplastic effects in a human colorectal cancer cell line. Pharmacogenet Genomics 2008; 18: 977–988.

    CAS  PubMed  Google Scholar 

  64. Veenman L, Shandalov Y, Gavish M . VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J Bioenerg Biomembr 2008; 40: 199–205.

    CAS  PubMed  Google Scholar 

  65. Galluzzi L, Blomgren K, Kroemer G . Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 2009; 10: 481–494.

    CAS  PubMed  Google Scholar 

  66. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 2004; 427: 461–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Krauskopf A, Eriksson O, Craigen WJ, Forte MA, Bernardi P . Properties of the permeability transition in VDAC1(-/-) mitochondria. Biochim Biophys Acta 2006; 1757: 590–595.

    CAS  PubMed  Google Scholar 

  68. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD . Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 2007; 9: 550–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bernardi P . The mitochondrial permeability transition pore: a mystery solved? Front Physiol 2013; 4: 95.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sileikyte J, Blachly-Dyson E, Sewell R, Carpi A, Menabo R, Di Lisa F et al. Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (Translocator Protein of 18 kDa (TSPO)). J Biol Chem 2014; 289: 13769–13781.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 2013; 110: 5887–5892.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bae KR, Shim HJ, Balu D, Kim SR, Yu SW . Translocator protein 18 kDa negatively regulates inflammation in microglia. J Neuroimmune Pharmacol 2014; 9: 424–437.

    PubMed  Google Scholar 

  73. Wilms H, Claasen J, Rohl C, Sievers J, Deuschl G, Lucius R . Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: evidence from activated microglial cells in vitro. Neurobiol Dis 2003; 14: 417–424.

    CAS  PubMed  Google Scholar 

  74. Ryu JK, Choi HB, McLarnon JG . Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis 2005; 20: 550–561.

    CAS  PubMed  Google Scholar 

  75. Veiga S, Azcoitia I, Garcia-Segura LM . Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity. J Neurosci Res 2005; 80: 129–137.

    CAS  PubMed  Google Scholar 

  76. Leaver KR, Reynolds A, Bodard S, Guilloteau D, Chalon S, Kassiou M . Effects of translocator protein (18 kDa) ligands on microglial activation and neuronal death in the quinolinic-acid-injected rat striatum. ACS Chem Neurosci 2012; 3: 114–119.

    CAS  PubMed  Google Scholar 

  77. Wang W, Zhang L, Zhang X, Xue R, Li L, Zhao W et al. Lentiviral-mediated overexpression of the 18 kDa translocator protein (TSPO) in the hippocampal dentate gyrus ameliorates LPS-induced cognitive impairment in mice. Front Pharmacol 2016; 7: 384.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Daugherty DJ, Selvaraj V, Chechneva OV, Liu XB, Pleasure DE, Deng W . A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol Med 2013; 5: 891–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ravikumar B, Crawford D, Dellovade T, Savinainen A, Graham D, Liere P et al. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of multiple sclerosis. Neuropharmacology 2016; 108: 229–237.

    CAS  PubMed  Google Scholar 

  80. Simon-O'Brien E, Gauthier D, Riban V, Verleye M . Etifoxine improves sensorimotor deficits and reduces glial activation, neuronal degeneration, and neuroinflammation in a rat model of traumatic brain injury. J Neuroinflamm 2016; 13: 203.

    Google Scholar 

  81. Daugherty DJ, Chechneva O, Mayrhofer F, Deng W . The hGFAP-driven conditional TSPO knockout is protective in a mouse model of multiple sclerosis. Sci Rep 2016; 6: 22556.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao AH, Tu LN, Mukai C, Sirivelu MP, Pillai VV, Morohaku K et al. Mitochondrial translocator protein (TSPO) function is not essential for heme biosynthesis. J Biol Chem 2016; 291: 1591–1603.

    CAS  PubMed  Google Scholar 

  83. Liu GJ, Middleton RJ, Kam WW, Chin DY, Hatty CR, Chan RH et al. Functional gains in energy and cell metabolism after TSPO gene insertion. Cell Cycle 2017; 16: 436–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Guo Y, Kalathur RC, Liu Q, Kloss B, Bruni R, Ginter C et al. Protein structure. Structure and activity of tryptophan-rich TSPO proteins. Science 2015; 347: 551–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Joo HK, Lee YR, Lim SY, Lee EJ, Choi S, Cho EJ et al. Peripheral benzodiazepine receptor regulates vascular endothelial activations via suppression of the voltage-dependent anion channel-1. FEBS Lett 2012; 586: 1349–1355.

    CAS  PubMed  Google Scholar 

  86. Joo HK, Lee YR, Kang G, Choi S, Kim CS, Ryoo S et al. The 18-kDa translocator protein inhibits vascular cell adhesion molecule-1 expression via inhibition of mitochondrial reactive oxygen species. Mol Cells 2015; 38: 1064–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Baez E, Guio-Vega GP, Echeverria V, Sandoval-Rueda DA, Barreto GE . 4'-Chlorodiazepam protects mitochondria in T98G astrocyte cell line from glucose deprivation. Neurotox Res 2017; 32: 163–171.

    CAS  PubMed  Google Scholar 

  88. Ramsay SC, Weiller C, Myers R, Cremer JE, Luthra SK, Lammertsma AA et al. Monitoring by PET of macrophage accumulation in brain after ischaemic stroke. Lancet 1992; 339: 1054–1055.

    CAS  PubMed  Google Scholar 

  89. Venneti S, Lopresti BJ, Wiley CA . Molecular imaging of microglia/macrophages in the brain. Glia 2013; 61: 10–23.

    PubMed  Google Scholar 

  90. Vivash L, O'Brien TJ . Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med 2016; 57: 165–168.

    CAS  PubMed  Google Scholar 

  91. Endres CJ, Pomper MG, James M, Uzuner O, Hammoud DA, Watkins CC et al. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J Nucl Medi 2009; 50: 1276–1282.

    CAS  Google Scholar 

  92. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007; 27: 1533–1539.

    CAS  PubMed  Google Scholar 

  93. Coughlin JM, Wang Y, Ma S, Yue C, Kim PK, Adams AV et al. Regional brain distribution of translocator protein using [(11)C]DPA-713 PET in individuals infected with HIV. J Neurovirol 2014; 20: 219–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab 2013; 33: 53–58.

    CAS  PubMed  Google Scholar 

  95. Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans 2015; 43: 586–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A . Kinetic modeling without accounting for the vascular component impairs the quantification of [(11)C]PBR28 brain PET data. J Cereb Blood Flow Metab 2014; 34: 1060–1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Veronese M, Reis Marques T, Bloomfield PS, Rizzo G, Singh N, Jones D et al. Kinetic modelling of [11C]PBR28 for 18 kDa translocator protein PET data: a validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab 2017 (in press).

  98. Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Medi 2011; 52: 24–32.

    CAS  Google Scholar 

  99. Jaremko M, Jaremko L, Giller K, Becker S, Zweckstetter M . Backbone and side-chain resonance assignment of the A147T polymorph of mouse TSPO in complex with a high-affinity radioligand. Biomol NMR Assign 2016; 10: 79–83.

    CAS  PubMed  Google Scholar 

  100. Jaremko M, Jaremko L, Giller K, Becker S, Zweckstetter M . Structural Integrity of the A147T Polymorph of Mammalian TSPO. Chembiochem 2015; 16: 1483–1489.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nucl Med 2015; 56: 701–706.

    CAS  PubMed  Google Scholar 

  102. Slifstein M, Abi-Dargham A . Recent developments in molecular brain imaging of neuropsychiatric disorders. Semin Nucl Med 2017; 47: 54–63.

    PubMed  Google Scholar 

  103. Serhan CN, Savill J . Resolution of inflammation: the beginning programs the end. Nat Immunol 2005; 6: 1191–1197.

    CAS  PubMed  Google Scholar 

  104. Schwartz M, Baruch K . The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 2014; 33: 7–22.

    CAS  PubMed  Google Scholar 

  105. Filiou MD, Arefin AS, Moscato P, Graeber MB . 'Neuroinflammation' differs categorically from inflammation: transcriptomes of Alzheimer's disease, Parkinson's disease, schizophrenia and inflammatory diseases compared. Neurogenetics 2014; 15: 201–212.

    CAS  PubMed  Google Scholar 

  106. Estes ML, McAllister AK . Alterations in immune cells and mediators in the brain: it's not always neuroinflammation!. Brain Pathol 2014; 24: 623–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Graeber MB, Streit WJ . Microglia: immune network in the CNS. Brain Pathol 1990; 1: 2–5.

    CAS  PubMed  Google Scholar 

  108. Lawson LJ, Perry VH, Gordon S . Turnover of resident microglia in the normal adult mouse brain. Neuroscience 1992; 48: 405–415.

    CAS  PubMed  Google Scholar 

  109. Svahn AJ, Becker TS, Graeber MB . Emergent properties of microglia. Brain Pathol 2014; 24: 665–670.

    PubMed  PubMed Central  Google Scholar 

  110. Gomez-Nicola D, Perry VH . Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 2015; 21: 169–184.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wolf SA, Boddeke HW, Kettenmann H . Microglia in physiology and disease. Annu Rev Physiol 2017; 79: 619–643.

    CAS  PubMed  Google Scholar 

  112. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R . Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 2001; 101: 249–255.

    CAS  PubMed  Google Scholar 

  113. Salter MW, Beggs S . Sublime microglia: expanding roles for the guardians of the CNS. Cell 2014; 158: 15–24.

    CAS  PubMed  Google Scholar 

  114. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC . Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50: 1801–1807.

    PubMed  Google Scholar 

  115. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 2015; 72: 268–275.

    PubMed  PubMed Central  Google Scholar 

  116. Kenk M, Selvanathan T, Rao N, Suridjan I, Rusjan P, Remington G et al. Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo PET study with [18 F]-FEPPA. Schizophr Bull 2015; 41: 85–93.

    PubMed  Google Scholar 

  117. Suridjan I, Rusjan PM, Kenk M, Verhoeff NP, Voineskos AN, Rotenberg D et al. Quantitative imaging of neuroinflammation in human white matter: a positron emission tomography study with translocator protein 18 kDa radioligand, [18 F]-FEPPA. Synapse 2014; 68: 536–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Najjar S, Pearlman DM . Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 2015; 161: 102–112.

    PubMed  Google Scholar 

  119. Na KS, Jung HY, Kim YK . The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48: 277–286.

    CAS  PubMed  Google Scholar 

  120. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42: 115–121.

    CAS  PubMed  Google Scholar 

  121. Nakatomi Y, Mizuno K, Ishii A, Wada Y, Tanaka M, Tazawa S et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an (1)(1)C-(R)-PK11195 PET study. J Nucl Med 2014; 55: 945–950.

    CAS  PubMed  Google Scholar 

  122. Haarman BC, Riemersma-Van der Lek RF, de Groot JC, Ruhe HG, Klein HC, Zandstra TE et al. Neuroinflammation in bipolar disorder - A [(11)C]-(R)-PK11195 positron emission tomography study. Brain Behav Immun 2014; 40: 219–225.

    CAS  PubMed  Google Scholar 

  123. Haarman BC, Burger H, Doorduin J, Renken RJ, Sibeijn-Kuiper AJ, Marsman JB et al. Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder - a combined magnetic resonance imaging and positron emission tomography study. Brain Behav Immun 2016; 56: 21–33.

    CAS  PubMed  Google Scholar 

  124. Brites D, Fernandes A . Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015; 9: 476.

    PubMed  PubMed Central  Google Scholar 

  125. Gracia-Rubio I, Moscoso-Castro M, Pozo OJ, Marcos J, Nadal R, Valverde O . Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65: 104–117.

    CAS  PubMed  Google Scholar 

  126. Biesmans S, Meert TF, Bouwknecht JA, Acton PD, Davoodi N, De Haes P et al. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm 2013; 2013: 271359.

    PubMed  PubMed Central  Google Scholar 

  127. Hillmer AT, Sandiego CM, Hannestad J, Angarita GA, Kumar A, McGovern EM et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol Psychiatry 2017; 22: 1759–1766.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sandiego CM, Gallezot JD, Pittman B, Nabulsi N, Lim K, Lin SF et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci USA 2015; 112: 12468–12473.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ory D, Planas A, Dresselaers T, Gsell W, Postnov A, Celen S et al. PET imaging of TSPO in a rat model of local neuroinflammation induced by intracerebral injection of lipopolysaccharide. Nucl Med Biol 2015; 42: 753–761.

    CAS  PubMed  Google Scholar 

  130. Ory D, Postnov A, Koole M, Celen S, de Laat B, Verbruggen A et al. Quantification of TSPO overexpression in a rat model of local neuroinflammation induced by intracerebral injection of LPS by the use of [(18)F]DPA-714 PET. Eur J Nucl Med Mol Imaging 2016; 43: 163–172.

    CAS  PubMed  Google Scholar 

  131. Dickens AM, Vainio S, Marjamaki P, Johansson J, Lehtiniemi P, Rokka J et al. Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers 11C-(R)-PK11195 and 18F-GE-180. J Nucl Med 2014; 55: 466–472.

    CAS  PubMed  Google Scholar 

  132. Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED et al. Endotoxin-induced systemic inflammation activates microglia: [(1)(1)C]PBR28 positron emission tomography in nonhuman primates. Neuroimage 2012; 63: 232–239.

    CAS  PubMed  Google Scholar 

  133. Banati RB, Myers R, Kreutzberg GW . PK ('peripheral benzodiazepine')—binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 1997; 26: 77–82.

    CAS  PubMed  Google Scholar 

  134. Wei XH, Wei X, Chen FY, Zang Y, Xin WJ, Pang RP et al. The upregulation of translocator protein (18 kDa) promotes recovery from neuropathic pain in rats. J Neurosci 2013; 33: 1540–1551.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Arlicot N, Tronel C, Bodard S, Garreau L, de la Crompe B, Vandevelde I et al. Translocator protein (18 kDa) mapping with [125I]-CLINDE in the quinolinic acid rat model of excitotoxicity: a longitudinal comparison with microglial activation, astrogliosis, and neuronal death. Mol Imaging 2014; 13: 4–11.

    PubMed  Google Scholar 

  136. Coughlin JM, Wang Y, Munro CA, Ma S, Yue C, Chen S et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol Dis 2015; 74: 58–65.

    PubMed  Google Scholar 

  137. Coughlin JM, Wang Y, Minn I, Bienko N, Ambinder EB, Xu X et al. Imaging of glial cell activation and white matter integrity in brains of active and recently retired national football league players. JAMA Neurol 2017; 74: 67–74.

    PubMed  PubMed Central  Google Scholar 

  138. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000; 123 (Pt 11): 2321–2337.

    PubMed  Google Scholar 

  139. Herranz E, Gianni C, Louapre C, Treaba CA, Govindarajan ST, Ouellette R et al. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann Neurol 2016; 80: 776–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Colasanti A, Guo Q, Giannetti P, Wall MB, Newbould RD, Bishop C et al. Hippocampal neuroinflammation, functional connectivity, and depressive symptoms in multiple sclerosis. Biol Psychiatry 2016; 80: 62–72.

    PubMed  PubMed Central  Google Scholar 

  141. Price CJ, Wang D, Menon DK, Guadagno JV, Cleij M, Fryer T et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 2006; 37: 1749–1753.

    PubMed  Google Scholar 

  142. Thiel A, Radlinska BA, Paquette C, Sidel M, Soucy JP, Schirrmacher R et al. The temporal dynamics of poststroke neuroinflammation: a longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke. J Nucl Med 2010; 51: 1404–1412.

    CAS  PubMed  Google Scholar 

  143. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M et al. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies. J Neurosci 2008; 28: 12255–12267.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2009; 35: 306–328.

    CAS  PubMed  Google Scholar 

  145. Politis M, Lahiri N, Niccolini F, Su P, Wu K, Giannetti P et al. Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers. Neurobiol Dis 2015; 83: 115–121.

    CAS  PubMed  Google Scholar 

  146. Coughlin JM, Wang Y, Ambinder EB, Ward RE, Minn I, Vranesic M et al. In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [(11)C]DPA-713 PET and analysis of CSF and plasma. Transl Psychiatry 2016; 6: e777.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Collste K, Plaven-Sigray P, Fatouros-Bergman H, Victorsson P, Schain M, Forsberg A et al. Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and [11C]PBR28. Mol Psychiatry 2017; 22: 850–856.

    CAS  PubMed  Google Scholar 

  148. Colonna M, Butovsky O . Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 2017; 35: 441–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Minagar A, Toledo EG, Alexander JS, Kelley RE . Pathogenesis of brain and spinal cord atrophy in multiple sclerosis. J Neuroimaging 2004; 14 (3 Suppl): 5s–10s.

    PubMed  Google Scholar 

  150. Durrenberger PF, Fernando FS, Kashefi SN, Bonnert TP, Seilhean D, Nait-Oumesmar B et al. Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm (Vienna) 2015; 122: 1055–1068.

    CAS  Google Scholar 

  151. Jack C, Ruffini F, Bar-Or A, Antel JP . Microglia and multiple sclerosis. J Neurosci Res 2005; 81: 363–373.

    CAS  PubMed  Google Scholar 

  152. Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 2006; 112: 305–316.

    CAS  PubMed  Google Scholar 

  153. Bernstein HG, Steiner J, Bogerts B . Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 2009; 9: 1059–1071.

    CAS  PubMed  Google Scholar 

  154. Mishra MK, Yong VW . Myeloid cells - targets of medication in multiple sclerosis. Nat Rev Neurol 2016; 12: 539–551.

    CAS  PubMed  Google Scholar 

  155. Maxeiner HG, Marion Schneider E, Kurfiss ST, Brettschneider J, Tumani H, Bechter K . Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. Cytokine 2014; 69: 62–67.

    CAS  PubMed  Google Scholar 

  156. Banati RB, Egensperger R, Maassen A, Hager G, Kreutzberg GW, Graeber MB . Mitochondria in activated microglia in vitro. J Neurocytol 2004; 33: 535–541.

    PubMed  Google Scholar 

  157. Owen DR, Narayan N, Wells L, Healy L, Smyth E, Rabiner EA et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab 2017; 37: 2679–2690.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Jones T, Rabiner EA . The development, past achievements, and future directions of brain PET. J Cereb Blood Flow Metab 2012; 32: 1426–1454.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. McGuire P, Howes OD, Stone J, Fusar-Poli P . Functional neuroimaging in schizophrenia: diagnosis and drug discovery. Trends Pharmacol Sci 2008; 29: 91–98.

    CAS  PubMed  Google Scholar 

  160. Thompson JL, Urban N, Abi-Dargham A . How have developments in molecular imaging techniques furthered schizophrenia research? Imaging Med 2009; 1: 135–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Bonoldi I, Howes OD . The enduring centrality of dopamine in the pathophysiology of schizophrenia: in vivo evidence from the prodrome to the first psychotic episode. Adv Pharmacol 2013; 68: 199–220.

    CAS  PubMed  Google Scholar 

  162. Kambeitz J, Abi-Dargham A, Kapur S, Howes OD . Alterations in cortical and extrastriatal subcortical dopamine function in schizophrenia: systematic review and meta-analysis of imaging studies. Br J Psychiatry 2014; 204: 420–429.

    PubMed  Google Scholar 

  163. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64: 820–822.

    PubMed  Google Scholar 

  164. Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [(11)C]PBR28 PET brain imaging study. Am J Psychiatry 2016; 173: 44–52.

    PubMed  Google Scholar 

  165. Block ML, Zecca L, Hong JS . Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8: 57–69.

    CAS  PubMed  Google Scholar 

  166. Surace MJ, Block ML . Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors. Cell Mol Life Sci 2012; 69: 2409–2427.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Meyer U, Schwarz MJ, Muller N . Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 2011; 132: 96–110.

    CAS  PubMed  Google Scholar 

  168. Sommer IE, van Westrhenen R, Begemann MJ, de Witte LD, Leucht S, Kahn RS . Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull 2014; 40: 181–191.

    PubMed  Google Scholar 

  169. Fond G, Hamdani N, Kapczinski F, Boukouaci W, Drancourt N, Dargel A et al. Effectiveness and tolerance of anti-inflammatory drugs' add-on therapy in major mental disorders: a systematic qualitative review. Acta Psychiatr Scand 2014; 129: 163–179.

    CAS  PubMed  Google Scholar 

  170. Muller N, Weidinger E, Leitner B, Schwarz MJ . The role of inflammation in schizophrenia. Front Neurosci 2015; 9: 372.

    PubMed  PubMed Central  Google Scholar 

  171. Novak ML, Koh TJ . Macrophage phenotypes during tissue repair. J Leukoc Biol 2013; 93: 875–881.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Engler H, Brendt P, Wischermann J, Wegner A, Rohling R, Schoemberg T et al. Selective increase of cerebrospinal fluid IL-6 during experimental systemic inflammation in humans: association with depressive symptoms. Mol Psychiatry 2017; 22: 1448–1454.

    CAS  PubMed  Google Scholar 

  173. Okazawa H, Ikawa M, Tsujikawa T, Kiyono Y, Yoneda M . Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Q J Nucl Med Mol Imaging 2014; 58: 387–397.

    CAS  PubMed  Google Scholar 

  174. Scholl M, Damian A, Engler H . Fluorodeoxyglucose PET in neurology and psychiatry. PET Clin 2014; 9: 371–390, v.

    PubMed  Google Scholar 

  175. Tsukada H, Kanazawa M, Ohba H, Nishiyama S, Harada N, Kakiuchi T . PET imaging of mitochondrial complex I with 18 F-BCPP-EF in the brains of MPTP-treated monkeys. J Nucl Med 2016; 57: 950–953.

    CAS  PubMed  Google Scholar 

  176. Coughlin JM, Ishizuka K, Kano SI, Edwards JA, Seifuddin FT, Shimano MA et al. Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia. Mol Psychiatry 2013; 18: 10–11.

    CAS  PubMed  Google Scholar 

  177. Coughlin JM, Hayes LN, Tanaka T, Xiao M, Yolken RH, Worley P et al. Reduced superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with early psychosis in association with clinical features. Schizophr Res 2017; 183: 64–69.

    PubMed  Google Scholar 

  178. Pasquali L, Pecori C, Chico L, Iudice A, Siciliano G, Bonuccelli U . Relation between plasmatic and cerebrospinal fluid oxidative stress biomarkers and intrathecal Ig synthesis in Multiple Sclerosis patients. J Neuroimmunol 2015; 283: 39–42.

    CAS  PubMed  Google Scholar 

  179. Landek-Salgado MA, Faust TE, Sawa A . Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21: 10–28.

    CAS  PubMed  Google Scholar 

  180. Koga M, Serritella AV, Sawa A, Sedlak TW . Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176: 52–71.

    PubMed  Google Scholar 

  181. Steullet P, Cabungcal JH, Monin A, Dwir D, O'Donnell P, Cuenod M et al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a "central hub" in schizophrenia pathophysiology? Schizophr Res 2016; 176: 41–51.

    CAS  PubMed  Google Scholar 

  182. Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA et al. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 2017; 22: 936–943.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Kaur J, Tietz O, Bhardwaj A, Marshall A, Way J, Wuest M et al. Design, synthesis, and evaluation of an (18)F-labeled radiotracer based on celecoxib-NBD for positron emission tomography (PET) imaging of cyclooxygenase-2 (COX-2). ChemMedChem 2015; 10: 1635–1640.

    CAS  PubMed  Google Scholar 

  184. Tietz O, Wuest M, Marshall A, Glubrecht D, Hamann I, Wang M et al. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Res 2016; 6: 37.

    PubMed  PubMed Central  Google Scholar 

  185. Ricciotti E, FitzGerald GA . Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011; 31: 986–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Schmelzer KR, Kubala L, Newman JW, Kim IH, Eiserich JP, Hammock BD . Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci USA 2005; 102: 9772–9777.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Ren Q, Ma M, Ishima T, Morisseau C, Yang J, Wagner KM et al. Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci USA 2016; 113: E1944–E1952.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Horti AG, Wang Y, Minn I, Lan X, Wang J, Koehler RC et al. 18 F-FNDP for PET imaging of soluble epoxide hydrolase. J Nucl Med 2016; 57: 1817–1822.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Sura P, Sura R, Enayetallah AE, Grant DF . Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem 2008; 56: 551–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. An Y, Belevych N, Wang Y, Zhang H, Herschman H, Chen Q et al. Neuronal and nonneuronal COX-2 expression confers neurotoxic and neuroprotective phenotypes in response to excitotoxin challenge. J Neurosci Res 2014; 92: 486–495.

    CAS  PubMed  Google Scholar 

  191. Wolf Y, Yona S, Kim KW, Jung S . Microglia, seen from the CX3CR1 angle. Front Cell Neurosci 2013; 7: 26.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Quarantelli M . MRI/MRS in neuroinflammation: methodology and applications. Clin Transl Imaging 2015; 3: 475–489.

    PubMed  PubMed Central  Google Scholar 

  193. Pasternak O, Kubicki M, Shenton ME . In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173: 200–212.

    PubMed  Google Scholar 

  194. Pasternak O, Westin CF, Dahlben B, Bouix S, Kubicki M . The extent of diffusion MRI markers of neuroinflammation and white matter deterioration in chronic schizophrenia. Schizophr Res 2015; 161: 113–118.

    PubMed  Google Scholar 

  195. Chiappelli J, Hong LE, Wijtenburg SA, Du X, Gaston F, Kochunov P et al. Alterations in frontal white matter neurochemistry and microstructure in schizophrenia: implications for neuroinflammation. Transl Psychiatry 2015; 5: e548.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

TN receives financial support from a 2017 ‘Forschungskredit’ granted by the University of Zurich and by a Swiss National Science Foundation Early Postdoc.Mobility fellowship (P2ZHP3_174868); JMC receives financial support from the Johns Hopkins Doris Duke Early Clinician Investigator Award and the Alexander Wilson Schweizer Fellowship; AS receives financial support from the NIH (DA040127, MH092443, MH094268,and MH105660) and foundations of Stanley, BBRF and S-R/RUSK; and UM receives financial support from the Swiss National Science Foundation (310030_169544) and the Foundation for Research in Science and the Humanities at the University of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Meyer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notter, T., Coughlin, J., Sawa, A. et al. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry 23, 36–47 (2018). https://doi.org/10.1038/mp.2017.232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.232

This article is cited by

Search

Quick links