Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptome organization for chronic alcohol abuse in human brain

Subjects

Abstract

Alcohol dependence is a heterogeneous psychiatric disorder characterized by high genetic heritability and neuroadaptations occurring from repeated drug exposure. Through an integrated systems approach we observed consistent differences in transcriptome organization within postmortem human brain tissue associated with the lifetime consumption of alcohol. Molecular networks, determined using high-throughput RNA sequencing, for drinking behavior were dominated by neurophysiological targets and signaling mechanisms of alcohol. The systematic structure of gene sets demonstrates a novel alliance of multiple ion channels, and related processes, underlying lifetime alcohol consumption. Coordinate expression of these transcripts was enriched for genome-wide association signals in alcohol dependence and a meta-analysis of alcohol self-administration in mice. Further dissection of genes within alcohol consumption networks revealed the potential interaction of alternatively spliced transcripts. For example, expression of a human-specific isoform of the voltage-gated sodium channel subunit SCN4B was significantly correlated to lifetime alcohol consumption. Overall, our work demonstrates novel convergent evidence for biological networks related to excessive alcohol consumption, which may prove fundamentally important in the development of pharmacotherapies for alcohol dependence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kauer JA, Malenka RC . Synaptic plasticity and addiction. Nat Rev Neurosci 2007; 8: 844–858.

    Article  CAS  Google Scholar 

  2. Koob GF, Volkow ND . Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35: 217–238.

    Article  Google Scholar 

  3. Heilig M, Goldman D, Berrettini W, O'Brien CP . Pharmacogenetic approaches to the treatment of alcohol addiction. Nat Rev Neurosci 2011; 12: 670–684.

    Article  CAS  Google Scholar 

  4. Farris SP, Wolen AR, Miles MF . Using expression genetics to study the neurobiology of ethanol and alcoholism. Int Rev Neurobiol 2010; 91: 95–128.

    Article  CAS  Google Scholar 

  5. Sutherland GT, Sheedy D, Kril JJ . Using autopsy brain tissue to study alcohol-related brain damage in the genomic age. Alcohol Clin Exp Res 2014; 38: 1–8.

    Article  Google Scholar 

  6. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD . Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 2012; 32: 1884–1897.

    Article  CAS  Google Scholar 

  7. Contet C . Gene expression under the influence: transcriptional profiling of ethanol in the brain. Curr Psychopharmacol 2012; 1: 301–314.

    Article  CAS  Google Scholar 

  8. Hitzemann R, Bottomly D, Darakjian P, Walter N, Iancu O, Searles R et al. Genes, behavior and next-generation RNA sequencing. Genes Brain Behav 2013; 12: 1–12.

    Article  CAS  Google Scholar 

  9. Zhou Z, Yuan Q, Mash DC, Goldman D . Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proc Natl Acad Sci USA 2011; 108: 6626–6631.

    Article  CAS  Google Scholar 

  10. Enoch M-A, Zhou Z, Kimura M, Mash DC, Yuan Q, Goldman D . GABAergic gene expression in postmortem hippocampus from alcoholics and cocaine addicts; corresponding findings in alcohol-naïve P and NP rats. PLoS One 2012; 7: e29369.

    Article  CAS  Google Scholar 

  11. Lee C, Mayfield RD, Harris RA . Altered gamma-aminobutyric acid type B receptor subunit 1 splicing in alcoholics. Biol Psychiatry 2014; 75: 765–773.

    Article  CAS  Google Scholar 

  12. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S et al. Functional organization of the transcriptome in human brain. Nat Neurosci 2008; 11: 1271–1282.

    Article  CAS  Google Scholar 

  13. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489: 391–399.

    Article  CAS  Google Scholar 

  14. Civelek M, Lusis AJ . Systems genetics approaches to understand complex traits. Nat Rev Genet 2014; 15: 34–48.

    Article  CAS  Google Scholar 

  15. Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 2008; 40: 854–861.

    Article  CAS  Google Scholar 

  16. Koob GF, Le Moal M . Drug abuse: hedonic homeostatic dysregulation. Science 1997; 278: 52–58.

    Article  CAS  Google Scholar 

  17. Nestler EJ, Aghajanian GK . Molecular and cellular basis of addiction. Science 1997; 278: 58–63.

    Article  CAS  Google Scholar 

  18. Kalivas PW, Volkow ND . The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005; 162: 1403–1413.

    Article  Google Scholar 

  19. Goldstein RZ, Volkow ND . Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 2011; 12: 652–669.

    Article  CAS  Google Scholar 

  20. Xing Y, Yu T, Wu YN, Roy M, Kim J, Lee C . An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic Acids Res 2006; 34: 3150–3160.

    Article  CAS  Google Scholar 

  21. Anders S, Huber W . Differential expression analysis for sequence count data. Genome Biol 2010; 11: R106.

    Article  CAS  Google Scholar 

  22. Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559.

    Article  Google Scholar 

  23. Langfelder P, Zhang B, Horvath S . Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 2008; 24: 719–720.

    Article  CAS  Google Scholar 

  24. Langfelder P, Luo R, Oldham MC, Horvath S . Is my network module preserved and reproducible? PLoS Comput Biol 2011; 7: e1001057.

    Article  CAS  Google Scholar 

  25. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  Google Scholar 

  26. Chen J, Bardes EE, Aronow BJ, Jegga AG . ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 2009; 37: W305–W311.

    Article  CAS  Google Scholar 

  27. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008; 28: 264–278.

    Article  CAS  Google Scholar 

  28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498–2504.

    Article  CAS  Google Scholar 

  29. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 2007; 39: 1181–1186.

    Article  CAS  Google Scholar 

  30. Durinck S, Spellman PT, Birney E, Huber W . Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 2009; 4: 1184–1191.

    Article  CAS  Google Scholar 

  31. Pruitt KD, Tatusova T, Klimke W, Maglott DR . NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 2009; 37: D32–D36.

    Article  CAS  Google Scholar 

  32. Zhang B, Horvath S . A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005; 4: Article 17.

    Article  Google Scholar 

  33. Barabási A-L, Oltvai ZN . Network biology: understanding the cell's functional organization. Nat Rev Genet 2004; 5: 101–113.

    Article  Google Scholar 

  34. Vidal M, Cusick ME, Barabási A-L . Interactome networks and human disease. Cell 2011; 144: 986–998.

    Article  CAS  Google Scholar 

  35. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M et al. Spatio-temporal transcriptome of the human brain. Nature 2011; 478: 483–489.

    Article  CAS  Google Scholar 

  36. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 2013; 155: 997–1007.

    Article  CAS  Google Scholar 

  37. Gaiteri C, Ding Y, French B, Tseng GC, Sibille E . Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav 2014; 13: 13–24.

    Article  CAS  Google Scholar 

  38. Iancu OD, Kawane S, Bottomly D, Searles R, Hitzemann R, McWeeney S . Utilizing RNA-Seq data for de novo coexpression network inference. Bioinformatics 2012; 28: 1592–1597.

    Article  CAS  Google Scholar 

  39. Harris RA, Trudell JR, Mihic SJ . Ethanol's molecular targets. Sci Signal 2008; 1: re7.

    Article  Google Scholar 

  40. Ron D, Messing RO . Signaling pathways mediating alcohol effects. Curr Top Behav Neurosci 2013; 13: 87–126.

    Article  CAS  Google Scholar 

  41. Lovinger DM, Crabbe JC . Laboratory models of alcoholism: treatment target identification and insight into mechanisms. Nat Neurosci 2005; 8: 1471–1480.

    Article  CAS  Google Scholar 

  42. Everitt BJ, Robbins TW . Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005; 8: 1481–1489.

    CAS  Google Scholar 

  43. Lovinger DM, White G, Weight FF . Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 1989; 243: 1721–1724.

    Article  CAS  Google Scholar 

  44. Bayés A, van de Lagemaat LN, Collins MO, Croning MDR, Whittle IR, Choudhary JS et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 2011; 14: 19–21.

    Article  Google Scholar 

  45. Mulligan MK, Ponomarev I, Hitzemann RJ, Belknap JK, Tabakoff B, Harris RA et al. Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Natl Acad Sci USA 2006; 103: 6368–6373.

    Article  CAS  Google Scholar 

  46. Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 2003; 115: 655–666.

    Article  CAS  Google Scholar 

  47. Kuo P-H, Kalsi G, Prescott CA, Hodgkinson CA, Goldman D, Alexander J et al. Associations of glutamate decarboxylase genes with initial sensitivity and age-at-onset of alcohol dependence in the Irish Affected Sib Pair Study of Alcohol Dependence. Drug Alcohol Depend 2009; 101: 80–87.

    Article  CAS  Google Scholar 

  48. Buck KJ, Metten P, Belknap JK, Crabbe JC . Quantitative trait loci involved in genetic predisposition to acute alcohol withdrawal in mice. J Neurosci 1997; 17: 3946–3955.

    Article  CAS  Google Scholar 

  49. Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011; 147: 235–246.

    Article  Google Scholar 

  50. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013; 155: 1008–1021.

    Article  CAS  Google Scholar 

  51. Harris RA . Ethanol actions on multiple ion channels: which are important? Alcohol Clin Exp Res 1999; 23: 1563–1570.

    CAS  PubMed  Google Scholar 

  52. Hayashi K, Ohshima T, Mikoshiba K . Pak1 is involved in dendrite initiation as a downstream effector of Rac1 in cortical neurons. Mol Cell Neurosci 2002; 20: 579–594.

    Article  CAS  Google Scholar 

  53. Hayashi K, Ohshima T, Hashimoto M, Mikoshiba K . Pak1 regulates dendritic branching and spine formation. Dev Neurobiol 2007; 67: 655–669.

    Article  CAS  Google Scholar 

  54. Robinson TE, Kolb B . Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 2004; 47: 33–46.

    Article  CAS  Google Scholar 

  55. Tabakoff B, Saba L, Kechris K, Hu W, Bhave SV, Finn DA et al. The genomic determinants of alcohol preference in mice. Mamm Genome 2008; 19: 352–365.

    Article  CAS  Google Scholar 

  56. Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P et al. Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 2003; 23: 7577–7585.

    Article  CAS  Google Scholar 

  57. Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM . Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron 2005; 45: 233–244.

    Article  CAS  Google Scholar 

  58. Oyama F, Miyazaki H, Sakamoto N, Becquet C, Machida Y, Kaneko K et al. Sodium channel beta4 subunit: down-regulation and possible involvement in neuritic degeneration in Huntington's disease transgenic mice. J Neurochem 2006; 98: 518–529.

    Article  CAS  Google Scholar 

  59. Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR . Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc Natl Acad Sci USA 2000; 97: 5616–5620.

    Article  CAS  Google Scholar 

  60. Crabbe JC, Belknap JK, Buck KJ . Genetic animal models of alcohol and drug abuse. Science 1994; 264: 1715–1723.

    Article  CAS  Google Scholar 

  61. Li TK . Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. J Stud Alcohol 2000; 61: 5–12.

    Article  CAS  Google Scholar 

  62. Heath AC, Bucholz KK, Madden PA, Dinwiddie SH, Slutske WS, Bierut LJ et al. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med 1997; 27: 1381–1396.

    Article  CAS  Google Scholar 

  63. Prescott CA, Kendler KS . Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am J Psychiatry 1999; 156: 34–40.

    Article  CAS  Google Scholar 

  64. Del Boca FK, Darkes J . The validity of self-reports of alcohol consumption: state of the science and challenges for research. Addiction 2003; 98 (Suppl 2): 1–12.

    Article  Google Scholar 

  65. Grant BF, Dawson DA, Stinson FS, Chou PS, Kay W, Pickering R . The Alcohol Use Disorder and Associated Disabilities Interview Schedule-IV (AUDADIS-IV): reliability of alcohol consumption, tobacco use, family history of depression and psychiatric diagnostic modules in a general population sample. Drug Alcohol Depend 2003; 71: 7–16.

    Article  Google Scholar 

  66. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C et al. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  Google Scholar 

  67. Schumann G, Coin LJ, Lourdusamy A, Charoen P, Berger KH, Stacey D et al. Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc Natl Acad Sci 2011; 108: 7119–7124.

    Article  CAS  Google Scholar 

  68. Pfefferbaum A, Sullivan EV, Mathalon DH, Lim KO . Frontal lobe volume loss observed with magnetic resonance imaging in older chronic alcoholics. Alcohol Clin Exp Res 1997; 21: 521–529.

    Article  CAS  Google Scholar 

  69. Farris SP, Miles MF . Fyn-dependent gene networks in acute ethanol sensitivity. PLoS One 2013; 8: e82435.

    Article  Google Scholar 

  70. Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET . Abnormal brain structure implicated in stimulant drug addiction. Science 2012; 335: 601–604.

    Article  CAS  Google Scholar 

  71. Poliak S, Peles E . The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 2003; 4: 968–980.

    Article  CAS  Google Scholar 

  72. Mercer TR, Dinger ME, Mattick JS . Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155–159.

    Article  CAS  Google Scholar 

  73. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ . Deep surveying of alternative splicing complexity in the human transcriptome by high- throughput sequencing. Nat Genet 2008; 40: 1413–1415.

    Article  CAS  Google Scholar 

  74. Rasband MN, Taylor CM, Bansal R . Paranodal transverse bands are required for maintenance but not initiation of Nav1.6 sodium channel clustering in CNS optic nerve axons. Glia 2003; 44: 173–182.

    Article  Google Scholar 

  75. Mason BJ, Quello S, Goodell V, Shadan F, Kyle M, Begovic A . Gabapentin treatment for alcohol dependence: a randomized clinical trial. JAMA Intern Med 2014; 174: 70–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing computing resources. The authors are grateful to the New South Wales Tissue Resource Centre at the University of Sydney for providing human brain samples; the Centre is supported by the National Health and Medical Research Council of Australia, Schizophrenia Research Institute and National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA R24AA012725). This work was supported by funding through the National Institute on Alcohol Abuse and Alcoholism and the Integrative Neuroscience Initiative on Alcoholism (INIA-West): AA013517, AA012404, AA020926, AA019382 and AA007471.

Author Contributions

SPF analyzed data and wrote the manuscript; DA, SH-S and RDM performed sequencing and mapping of collected sequence reads; and RAH and RDM assisted in experimental design, manuscript writing, and coordination of the collection and preparation for all experimental samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R D Mayfield.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Submission Classification: Biological Sciences—Neuroscience, Medical Sciences, Genetics.

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farris, S., Arasappan, D., Hunicke-Smith, S. et al. Transcriptome organization for chronic alcohol abuse in human brain. Mol Psychiatry 20, 1438–1447 (2015). https://doi.org/10.1038/mp.2014.159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.159

This article is cited by

Search

Quick links