Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Touch gives new life: mechanosensation modulates spinal cord adult neurogenesis

A Corrigendum to this article was published on 26 March 2012

Abstract

The ability to respond to a wide range of novel touch sensations and to habituate upon repeated exposures is fundamental for effective sensation. In this study we identified adult spinal cord neurogenesis as a potential novel player in the mechanism of tactile sensation. We demonstrate that a single exposure to a novel mechanosensory stimulus induced immediate proliferation of progenitor cells in the spinal dorsal horn, whereas repeated exposures to the same stimulus induced neuronal differentiation and survival. Most of the newly formed neurons differentiated toward a GABAergic fate. This touch-induced neurogenesis reflected the novelty of the stimuli, its diversity, as well as stimulus duration. Introducing adult neurogenesis as a potential mechanism of response to a novel stimulus and for habituation to repeated sensory exposures opens up potential new directions in treating hypersensitivity, pain and other mechanosensory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bounoutas A, Chalfie M . Touch sensitivity in Caenorhabditis elegans. Pflugers Arch 2007; 454: 691–702.

    Article  CAS  Google Scholar 

  2. Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 2000; 20: 2218–2228.

    Article  CAS  Google Scholar 

  3. Ke Y, Chi L, Xu R, Luo C, Gozal D, Liu R . Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells 2006; 24: 1011–1019.

    Article  Google Scholar 

  4. Shechter R, Ziv Y, Schwartz M . New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells 2007; 25: 2277–2282.

    Article  Google Scholar 

  5. Shihabuddin LS, Horner PJ, Ray J, Gage FH . Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000; 20: 8727–8735.

    Article  CAS  Google Scholar 

  6. Vessal M, Aycock A, Garton MT, Ciferri M, Darian-Smith C . Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur J Neurosci 2007; 26: 2777–2794.

    Article  Google Scholar 

  7. Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 1996; 16: 7599–7609.

    Article  CAS  Google Scholar 

  8. Yang H, Lu P, McKay HM, Bernot T, Keirstead H, Steward O et al. Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J Neurosci 2006; 26: 2157–2166.

    Article  CAS  Google Scholar 

  9. Brodin L, Christenson J, Grillner S . Single sensory neurons activate excitatory amino acid receptors in the lamprey spinal cord. Neurosci Lett 1987; 75: 75–79.

    Article  CAS  Google Scholar 

  10. Dykes RW, Craig AD . Control of size and excitability of mechanosensory receptive fields in dorsal column nuclei by homolateral dorsal horn neurons. J Neurophysiol 1998; 80: 120–129.

    Article  CAS  Google Scholar 

  11. Schneider SP . Mechanosensory afferent input and neuronal firing properties in rodent spinal laminae III-V: re-examination of relationships with analysis of responses to static and time-varying stimuli. Brain Res 2005; 1034: 71–89.

    Article  CAS  Google Scholar 

  12. Akiba Y, Sasaki H, Huerta PT, Estevez AG, Baker H, Cave JW . gamma-Aminobutyric acid-mediated regulation of the activity-dependent olfactory bulb dopaminergic phenotype. J Neurosci Res 2009; 87: 2211–2221.

    Article  CAS  Google Scholar 

  13. Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C et al. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 2009; 12: 1248–1256.

    Article  CAS  Google Scholar 

  14. Ma DK, Kim WR, Ming GL, Song H . Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann NY Acad Sci 2009; 1170: 664–673.

    Article  Google Scholar 

  15. Ortega-Perez I, Murray K, Lledo PM . The how and why of adult neurogenesis. J Mol Histol 2007; 38: 555–562.

    Article  Google Scholar 

  16. Gould E . How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 2007; 8: 481–488.

    Article  CAS  Google Scholar 

  17. Mitra R, Sundlass K, Parker KJ, Schatzberg AF, Lyons DM . Social stress-related behavior affects hippocampal cell proliferation in mice. Physiol Behav 2006; 89: 123–127.

    Article  CAS  Google Scholar 

  18. Cameron HA, McKay RD . Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001; 435: 406–417.

    Article  CAS  Google Scholar 

  19. Cooper-Kuhn CM, Kuhn HG . Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res 2002; 134: 13–21.

    Article  CAS  Google Scholar 

  20. Bauer S, Patterson PH . The cell cycle-apoptosis connection revisited in the adult brain. J Cell Biol 2005; 171: 641–650.

    Article  CAS  Google Scholar 

  21. Cameron HA, Dayer AG . New interneurons in the adult neocortex: small, sparse, but significant? Biol Psychiatry 2008; 63: 650–655.

    Article  Google Scholar 

  22. Tamura Y, Kataoka Y, Cui Y, Takamori Y, Watanabe Y, Yamada H . Multi-directional differentiation of doublecortin- and NG2-immunopositive progenitor cells in the adult rat neocortex in vivo. Eur J Neurosci 2007; 25: 3489–3498.

    Article  Google Scholar 

  23. Betarbet R, Zigova T, Bakay RA, Luskin MB . Dopaminergic and GABAergic interneurons of the olfactory bulb are derived from the neonatal subventricular zone. Int J Dev Neurosci 1996; 14: 921–930.

    Article  CAS  Google Scholar 

  24. Belachew S, Chittajallu R, Aguirre AA, Yuan X, Kirby M, Anderson S et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 2003; 161: 169–186.

    Article  CAS  Google Scholar 

  25. Dayer AG, Cleaver KM, Abouantoun T, Cameron HA . New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 2005; 168: 415–427.

    Article  CAS  Google Scholar 

  26. Seagrove LC, Suzuki R, Dickenson AH . Electrophysiological characterisations of rat lamina I dorsal horn neurones and the involvement of excitatory amino acid receptors. Pain 2004; 108: 76–87.

    Article  CAS  Google Scholar 

  27. Nishiyama A, Komitova M, Suzuki R, Zhu X . Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 2009; 10: 9–22.

    Article  CAS  Google Scholar 

  28. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH . Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 2003; 130: 391–399.

    Article  CAS  Google Scholar 

  29. Lledo PM, Lazarini F . Neuronal replacement in microcircuits of the adult olfactory system. C R Biol 2007; 330: 510–520.

    Article  CAS  Google Scholar 

  30. Alonso M, Viollet C, Gabellec MM, Meas-Yedid V, Olivo-Marin JC, Lledo PM . Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci 2006; 26: 10508–10513.

    Article  CAS  Google Scholar 

  31. Rochefort C, Gheusi G, Vincent JD, Lledo PM . Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 2002; 22: 2679–2689.

    Article  CAS  Google Scholar 

  32. Mak GK, Enwere EK, Gregg C, Pakarainen T, Poutanen M, Huhtaniemi I et al. Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci 2007; 10: 1003–1011.

    Article  CAS  Google Scholar 

  33. Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 2005; 8: 346–353.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Shelley Schwarzbaum for editing the manuscript. MS holds the Maurice and Ilse Katz Professorial Chair in Neuroimmunology. This work was supported in part by the High Q foundation and by IsrALS (to MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Schwartz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shechter, R., Baruch, K., Schwartz, M. et al. Touch gives new life: mechanosensation modulates spinal cord adult neurogenesis. Mol Psychiatry 16, 342–352 (2011). https://doi.org/10.1038/mp.2010.116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.116

Keywords

Search

Quick links