
efficacy, zosurabalpin has been evaluated in 
two phase I clinical trials8.

Compounds isolated from nature or the 
close relatives of such products have long 
dominated antibacterial drug discovery, 
because many such compounds have evolved 
the ability to kill bacteria. Indeed, only a hand-
ful of antibiotic classes — most notably sulfon-
amides, fluoroquinolones and oxazolidinones 
— are synthetic3. As such, the discovery and 
development of zosurabalpin is particularly 
notable, and it demonstrates that examining 
alternative sources of possible antibiotics 
beyond those that are usually tested — includ-
ing compounds from sources such as the MCP 
collection, which have a higher molecular 
weight than is typical for antibiotics — can 
be fruitful. This has also been demonstrated 
in other work with DNA-encoded molecular 
‘libraries’9.

Drug discovery that targets harmful 
Gram-negative bacteria is a long-standing 
challenge owing to difficulties in getting 
molecules to cross the bacterial membranes 
to reach targets in the cytoplasm. Successful 
compounds typically must possess a certain 
combination of chemical characteristics10,11. 
It therefore makes sense to pursue antibiotics 
that engage targets on the outside of the cell 
or in the space between the inner and outer 
membranes, termed the periplasm. LptB2FGC 
resides in the periplasm, so zosurabalpin does 
not need to reach the bacterial cytoplasm. 

This success with zosurabalpin mirrors that 
of other newly discovered antibiotics, such 
as darobactin12 and dynobactin13, which are 
also high-molecular-weight compounds that 
need to reach targets outside the cytoplasm. 
Non-cytoplasmic targets can probably be 
engaged by more-chemically-diverse com-
pounds (with respect to their size and shape) 
than can cytoplasmic targets.

With nearly all antibiotics, mutations (often 
in the target) arise that lead to antibiotic resist-
ance. Indeed, mutations in genes encoding 
components of LptB2FGC in zosurabalpin- 
resistant CRAB identified in the lab result in 
a striking decrease in zosurabalpin’s ability 
to kill the bacterium. In one case, a single- 
nucleotide mutation in the sequence encod-
ing the LptB2FGC complex resulted in a more 
than 256-fold decrease in antibiotic activity. 
The unusual mode of action of zosurabalpin 
requires LPS, and this foreshadows another 
potential limitation because A. baumannii 
is unusual in that it does not need LPS to be 
viable14. The bacterium can halt LPS synthe-
sis if necessary for survival — potentially 
rendering zosurabalpin ineffective against 
LPS- deficient A. baumannii. However, such a 
change would attenuate bacterial virulence15, 
and it remains to be determined whether this 
type of  antibiotic-resistance mechanism will 
be observed in the clinic.

This discovery opens the door to targeting 

the LPS-transport system of other problem-
atic Gram-negative bacteria, such as Pseu-
domonas aeruginosa, Klebsiella pneumoniae 
and Escherichia coli. In addition, there is now 
an appreciation that disruption of normal gut 
microbes (the microbiome) is deleterious to 
human health; such a disturbance is a conse-
quence of essentially all antibiotics used in the 
clinic. Given zosurabalpin’s high specificity 
for A. baumannii, it might be a microbiome- 
sparing antibiotic. The movement towards 
bacterium-specific antibiotics is a new devel-
opment, and one that can be facilitated by 
diagnostics that can rapidly identify specific 
harmful bacteria in infected individuals3. 
Given that zosurabalpin is already being tested 
in clinical trials, the future looks promising, 
with the possibility of a new antibiotic class 
being finally on the horizon for invasive CRAB 
infections.
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Although machines outperform humans at 
many tasks, from manufacturing to playing 
games1,2, they are commonly considered inca-
pable of creating or inventing things. But this 
is changing: over the past three years, technol-
ogy companies have been releasing artificial 
intelligence (AI) programs that can draw or 
write with impressive creativity. Scientific dis-
covery might be the next target, as computers 
start to uncover knowledge that has eluded 
scientists. On page 468, Romera-Paredes et al.3 
report an autonomous mathematical discov-
ery for which AI was used — not to check a 
proof or to execute tedious computations, but 
to solve open problems. This proof of concept 
is likely to be followed by other programs like 
it, as software becomes a creative contributor 
to scientific discoveries.

Romera-Paredes and colleagues’ work is 
the latest step in a long line of research that 
attempts to create programs automatically 
by taking inspiration from biological evolu-
tion, a field called genetic programming4. The 
process starts with running many random 

programs to find out how well each one can 
solve a target problem. The best programs 
are then selected, copied and randomly 
modified, in a manner that is similar to genetic 
variation. The process then begins again with 
these modified programs, which are selected 
and modified until one program solves the 
problem adequately.

The key question in genetic programming 
is how to represent programs so that they 
can be modified easily, but meaningfully, by 
random variation. In other words, what is the 
‘DNA’ of a computer program? For instance, 
adding random letters to a program written 
in the Python scripting language is unlikely 
to result in a program that follows Python 
syntax, which means that the vast majority of 
modified programs cannot be executed by the 
computer, and are therefore useless.

To approach this problem, genetic- 
programming researchers have taken inspi-
ration from compilers, which are programs 
that transform text written in a programming 
language into code that a computer can 
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Large language models 
help programs to evolve
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A branch of computer science known as genetic programming 
has been given a boost with the application of large language 
models that are trained on the combined intuition of the 
world’s programmers. See p.468
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interpret. Compilers represent programs in 
the computer’s memory with an abstract ‘tree’ 
structure. Using this representation, a genetic- 
programming system ‘mutates’ a program by 
randomly changing one node in the tree to a 
different value (Fig. 1a). For example, a muta-
tion might replace a plus sign with a minus 
sign, or the number 2 with a 3. Similarly, the 
system mixes two programs by exchanging 
randomly chosen sub-trees from the two 
separate programs.

This approach has given rise to many 
fascinating results. For the past 20 years, 
a competition has been held to show-
case how evolution-inspired algorithms 
measure up to those made by humans 
(see human-competitive.org /awards). 
One example is a program called Eureqa, 
which automatically finds the equations of 
motion for classic dynamical systems, such 
as a swinging pendulum, using data alone5. 
Another example is the GenProg system6, 
which provides a way of automatically repair-
ing existing open-source programs — and even 
earned its developers money doing so.

Nevertheless, genetic programming has 
so far been successful only for equations or 
short sections of programs, typically compris-
ing a dozen lines. The reason for this is that 
programming is hard. It requires the right 
syntax and intuition about what could work. 
And every change requires the programmer 
to take the context of the rest of the program 
into account. In general, random variations 
in syntax trees are rarely meaningful and the 
genetic-programming process yields results 
only through millions of repetitions.

This situation is changing with large lan-
guage models (LLMs). These large neural 
networks are trained to predict the next words 
in a line of code for a given context (known as a 
prompt), after having been fed millions of lines 
of code. This large body of examples gives the 
model an ‘intuition’ about what a typical pro-
grammer would write in the same situation. 

LLMs that are specialized in code generation 
are used daily by many programmers in the 
same way that people use the autocomplete 
function available in many apps — the model 
guesses the most likely text to follow each 
piece of code, so there is no need to type it or 
to memorize the function names.

LLMs are game-changing tools for program-
mers, but they might also be the missing piece 
of the genetic-programming puzzle: they 
embed the knowledge of thousands of pro-
grammers to generate meaningful code for 
a given context. Instead of replacing random 
parts of a syntax tree, an LLM can generate a 
variation of a program written in a standard 
programming language, such as Python. To 
do so, a simple, but powerful, approach is to 

select two programs, concatenate them, and 
ask the LLM to complete the program using 
the concatenated pair as a prompt — resulting 
in the generation of a third program (Fig. 1b). 
The result will probably have valid syntax 
and be meaningful in its context. However, 
it might not be exact or optimal. This is why 
the process must be iterated, by selecting the 
highest-performing programs, generating var-
iations using the LLM and then testing these 
variations.

Romera-Paredes et al. used this fresh 
approach to genetic programming to find 
ways of solving mathematical problems in 
optimization and geometry that were better 
than the best attempts of human program-
mers. The authors’ system shows promise, 
but it still requires guidance in the form of an 
‘evaluate function’, which nudges the model in 
the most productive direction. A more direct 

way would be to use a ‘validate function’, 
which determines when the problem has been 
solved. The authors’ evaluate function is sim-
ilar to a school test that has been designed to 
reward learning by striking a balance between 
easy and difficult questions.

Using automatic programmers, such as the 
one developed by Romera-Paredes and col-
leagues, will require the same level of careful 
judgement in crafting the right tests. How-
ever, the authors’ innovation demonstrates 
the power and potential of using LLMs to write 
creative programs for solving problems, and 
this advance is part of a developing success 
story7,8. As the problems intended for these 
models become ever more relevant, it’s clear 
that LLMs will breathe new life into genetic 
programming.
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Figure 1 | Genetic programming with large language models. Genetic 
programming is a computer-science approach that ‘mutates’ code, one 
variation at a time. a, A computer program can be represented with an abstract 
‘tree’ structure. In this representation, genetic programming involves changing 
one node in the tree at random, testing to see whether the change has improved 
the program and then repeating that process on the highest-performing 

programs. b, Instead of making changes to an abstract tree, Romera-Paredes et 
al.3 devised a genetic-programming method that involves taking two programs, 
concatenating them, and asking a large language model (LLM) to autocomplete 
a third program using the concatenated pair as a prompt. This approach enabled 
the authors to generate variants of programs that are likely to be meaningful in 
their specific context.
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“Genetic programming 
has so far been successful 
only for equations or short 
sections of programs.”
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