
efficacy, zosurabalpin has been evaluated in
two phase I clinical trials8.

Compounds isolated from nature or the
close relatives of such products have long
dominated antibacterial drug discovery,
because many such compounds have evolved
the ability to kill bacteria. Indeed, only a hand-
ful of antibiotic classes — most notably sulfon-
amides, fluoroquinolones and oxazolidinones
— are synthetic3. As such, the discovery and
development of zosurabalpin is particularly
notable, and it demonstrates that examining
alternative sources of possible antibiotics
beyond those that are usually tested — includ-
ing compounds from sources such as the MCP
collection, which have a higher molecular
weight than is typical for antibiotics — can
be fruitful. This has also been demonstrated
in other work with DNA-encoded molecular
‘libraries’9.

Drug discovery that targets harmful
Gram-negative bacteria is a long-standing
challenge owing to difficulties in getting
molecules to cross the bacterial membranes
to reach targets in the cytoplasm. Successful
compounds typically must possess a certain
combination of chemical characteristics10,11.
It therefore makes sense to pursue antibiotics
that engage targets on the outside of the cell
or in the space between the inner and outer
membranes, termed the periplasm. LptB2FGC
resides in the periplasm, so zosurabalpin does
not need to reach the bacterial cytoplasm.

This success with zosurabalpin mirrors that
of other newly discovered antibiotics, such
as darobactin12 and dynobactin13, which are
also high-molecular-weight compounds that
need to reach targets outside the cytoplasm.
Non-cytoplasmic targets can probably be
engaged by more-chemically-diverse com-
pounds (with respect to their size and shape)
than can cytoplasmic targets.

With nearly all antibiotics, mutations (often
in the target) arise that lead to antibiotic resist-
ance. Indeed, mutations in genes encoding
components of LptB2FGC in zosurabalpin-
resistant CRAB identified in the lab result in
a striking decrease in zosurabalpin’s ability
to kill the bacterium. In one case, a single-
nucleotide mutation in the sequence encod-
ing the LptB2FGC complex resulted in a more
than 256-fold decrease in antibiotic activity.
The unusual mode of action of zosurabalpin
requires LPS, and this foreshadows another
potential limitation because A. baumannii
is unusual in that it does not need LPS to be
viable14. The bacterium can halt LPS synthe-
sis if necessary for survival — potentially
rendering zosurabalpin ineffective against
LPS- deficient A. baumannii. However, such a
change would attenuate bacterial virulence15,
and it remains to be determined whether this
type of antibiotic-resistance mechanism will
be observed in the clinic.

This discovery opens the door to targeting

the LPS-transport system of other problem-
atic Gram-negative bacteria, such as Pseu-
domonas aeruginosa, Klebsiella pneumoniae
and Escherichia coli. In addition, there is now
an appreciation that disruption of normal gut
microbes (the microbiome) is deleterious to
human health; such a disturbance is a conse-
quence of essentially all antibiotics used in the
clinic. Given zosurabalpin’s high specificity
for A. baumannii, it might be a microbiome-
sparing antibiotic. The movement towards
bacterium-specific antibiotics is a new devel-
opment, and one that can be facilitated by
diagnostics that can rapidly identify specific
harmful bacteria in infected individuals3.
Given that zosurabalpin is already being tested
in clinical trials, the future looks promising,
with the possibility of a new antibiotic class
being finally on the horizon for invasive CRAB
infections.

Morgan K. Gugger and Paul J. Hergenrother
are in the Department of Chemistry, University

of Illinois at Urbana-Champaign, Urbana,
Illinois 61801, USA.
e-mail: hergenro@illinois.edu

1. Antimicrobial Resistance Collaborators. Lancet 399,
629–655 (2022).

2. Silver, L. L. Bioorg. Med. Chem. 24, 6379–6389 (2016).
3. Lewis, K. Cell 181, 29–45 (2020).
4. Du, X. et al. Am. J. Infect. Control 47, 1140–1145 (2019).
5. Zampaloni, C. et al. Nature 625, 566–571 (2024).
6. Pahil, K. S. et al. Nature 625, 572–577 (2024).
7. Theuretzbacher, U., Blasco, B., Duffey, M. & Piddock, L. J.

V. Nature Rev. Drug Discov. 22, 957–975 (2023).
8. Guenther, A. et al. Open Forum Infect. Dis. 10,

ofad500.1749 (2023).
9. Ryan, M. D. et al. J. Med. Chem. 64, 14377–14425 (2021).
10. Richter, M. F. et al. Nature 545, 299–304 (2017).
11. Geddes, E. J. et al. Nature 624, 145–153 (2023).
12. Imai, Y. et al. Nature 576, 459–464 (2019).
13. Miller, R. D. et al. Nature Microbiol. 7, 1661–1672 (2022).
14. Henry, R. et al. Antimicrob. Agents Chemother. 56, 59–69

(2012).
15. Beceiro, A. et al. Antimicrob. Agents. Chemother. 58,

518–526 (2014).

The authors declare no competing interests.
This article was published online on 3 January 2024.

Although machines outperform humans at
many tasks, from manufacturing to playing
games1,2, they are commonly considered inca-
pable of creating or inventing things. But this
is changing: over the past three years, technol-
ogy companies have been releasing artificial
intelligence (AI) programs that can draw or
write with impressive creativity. Scientific dis-
covery might be the next target, as computers
start to uncover knowledge that has eluded
scientists. On page 468, Romera-Paredes et al.3
report an autonomous mathematical discov-
ery for which AI was used — not to check a
proof or to execute tedious computations, but
to solve open problems. This proof of concept
is likely to be followed by other programs like
it, as software becomes a creative contributor
to scientific discoveries.

Romera-Paredes and colleagues’ work is
the latest step in a long line of research that
attempts to create programs automatically
by taking inspiration from biological evolu-
tion, a field called genetic programming4. The
process starts with running many random

programs to find out how well each one can
solve a target problem. The best programs
are then selected, copied and randomly
modified, in a manner that is similar to genetic
variation. The process then begins again with
these modified programs, which are selected
and modified until one program solves the
problem adequately.

The key question in genetic programming
is how to represent programs so that they
can be modified easily, but meaningfully, by
random variation. In other words, what is the
‘DNA’ of a computer program? For instance,
adding random letters to a program written
in the Python scripting language is unlikely
to result in a program that follows Python
syntax, which means that the vast majority of
modified programs cannot be executed by the
computer, and are therefore useless.

To approach this problem, genetic-
programming researchers have taken inspi-
ration from compilers, which are programs
that transform text written in a programming
language into code that a computer can

Computer science

Large language models
help programs to evolve
Jean-Baptiste Mouret

A branch of computer science known as genetic programming
has been given a boost with the application of large language
models that are trained on the combined intuition of the
world’s programmers. See p.468

452 | Nature | Vol 625 | 18 January 2024

News & views

interpret. Compilers represent programs in
the computer’s memory with an abstract ‘tree’
structure. Using this representation, a genetic-
programming system ‘mutates’ a program by
randomly changing one node in the tree to a
different value (Fig. 1a). For example, a muta-
tion might replace a plus sign with a minus
sign, or the number 2 with a 3. Similarly, the
system mixes two programs by exchanging
randomly chosen sub-trees from the two
separate programs.

This approach has given rise to many
fascinating results. For the past 20 years,
a competition has been held to show-
case how evolution-inspired algorithms
measure up to those made by humans
(see human-competitive.org /awards).
One example is a program called Eureqa,
which automatically finds the equations of
motion for classic dynamical systems, such
as a swinging pendulum, using data alone5.
Another example is the GenProg system6,
which provides a way of automatically repair-
ing existing open-source programs — and even
earned its developers money doing so.

Nevertheless, genetic programming has
so far been successful only for equations or
short sections of programs, typically compris-
ing a dozen lines. The reason for this is that
programming is hard. It requires the right
syntax and intuition about what could work.
And every change requires the programmer
to take the context of the rest of the program
into account. In general, random variations
in syntax trees are rarely meaningful and the
genetic-programming process yields results
only through millions of repetitions.

This situation is changing with large lan-
guage models (LLMs). These large neural
networks are trained to predict the next words
in a line of code for a given context (known as a
prompt), after having been fed millions of lines
of code. This large body of examples gives the
model an ‘intuition’ about what a typical pro-
grammer would write in the same situation.

LLMs that are specialized in code generation
are used daily by many programmers in the
same way that people use the autocomplete
function available in many apps — the model
guesses the most likely text to follow each
piece of code, so there is no need to type it or
to memorize the function names.

LLMs are game-changing tools for program-
mers, but they might also be the missing piece
of the genetic-programming puzzle: they
embed the knowledge of thousands of pro-
grammers to generate meaningful code for
a given context. Instead of replacing random
parts of a syntax tree, an LLM can generate a
variation of a program written in a standard
programming language, such as Python. To
do so, a simple, but powerful, approach is to

select two programs, concatenate them, and
ask the LLM to complete the program using
the concatenated pair as a prompt — resulting
in the generation of a third program (Fig. 1b).
The result will probably have valid syntax
and be meaningful in its context. However,
it might not be exact or optimal. This is why
the process must be iterated, by selecting the
highest-performing programs, generating var-
iations using the LLM and then testing these
variations.

Romera-Paredes et al. used this fresh
approach to genetic programming to find
ways of solving mathematical problems in
optimization and geometry that were better
than the best attempts of human program-
mers. The authors’ system shows promise,
but it still requires guidance in the form of an
‘evaluate function’, which nudges the model in
the most productive direction. A more direct

way would be to use a ‘validate function’,
which determines when the problem has been
solved. The authors’ evaluate function is sim-
ilar to a school test that has been designed to
reward learning by striking a balance between
easy and difficult questions.

Using automatic programmers, such as the
one developed by Romera-Paredes and col-
leagues, will require the same level of careful
judgement in crafting the right tests. How-
ever, the authors’ innovation demonstrates
the power and potential of using LLMs to write
creative programs for solving problems, and
this advance is part of a developing success
story7,8. As the problems intended for these
models become ever more relevant, it’s clear
that LLMs will breathe new life into genetic
programming.

Jean-Baptiste Mouret is at the French National
Institute for Research in Digital Science and
Technology (INRIA), the University of Lorraine,
and the French national research agency
(CNRS), 54000 Nancy, France.
e-mail: jean-baptiste.mouret@inria.fr

1. Silver, D. et al. Nature 529, 484–489 (2016).
2. Hsu, F.-H. Behind Deep Blue: Building the Computer that

Defeated the World Chess Champion (Princeton Univ.
Press, 2002).

3. Romera-Paredes, B. et al. Nature 625, 468–475 (2024).
4. Koza, J. R. Genetic Programming (MIT, 1992).
5. Schmidt, M. & Lipson, H. Science 324, 81–85 (2009).
6. Le Goues, C., Dewey-Vogt, M., Forrest, S. A. &

Weimer, W. R. In Proc. 34th International Conference on
Software Engineering 3–13 (IEEE, 2012).

7. Lehman, J. et al. in Handbook of Evolutionary Machine
Learning (eds Banzhaf, W. et al.) Ch. 11 (Springer Nature
Singapore, 2024).

8. Meyerson, E. et al. Preprint at https://arxiv.org/
abs/2302.12170 (2023).

The author declares no competing interests.

Figure 1 | Genetic programming with large language models. Genetic
programming is a computer-science approach that ‘mutates’ code, one
variation at a time. a, A computer program can be represented with an abstract
‘tree’ structure. In this representation, genetic programming involves changing
one node in the tree at random, testing to see whether the change has improved
the program and then repeating that process on the highest-performing

programs. b, Instead of making changes to an abstract tree, Romera-Paredes et
al.3 devised a genetic-programming method that involves taking two programs,
concatenating them, and asking a large language model (LLM) to autocomplete
a third program using the concatenated pair as a prompt. This approach enabled
the authors to generate variants of programs that are likely to be meaningful in
their specific context.

2a

1 + a
2

+

a b

÷1

Mutate

2a

1 – a
2

–

÷1

Test and
repeat

Autocomplete
with LLM Test and

repeatProgram 1 Program 3

Program 2

Program 3

“Genetic programming
has so far been successful
only for equations or short
sections of programs.”

Nature | Vol 625 | 18 January 2024 | 453

