
Chemistry research is grounded on iterative 
cycles in which experiments are designed, exe-
cuted and then refined to achieve a particular 
goal. The experience and intuition of research-
ers has a crucial role in working out the initial 
design, and in the subsequent optimization 
process — something that could not previously 
have been replicated in autonomous systems 
that carry out chemistry research. On page 
570, Boiko et al.1 report an artificial intelligence 
(AI) agent named Coscientist that can plan and 
orchestrate multiple tasks in the chemistry-re-
search cycle without detailed human input, 

bringing the vision of self-driving laboratories 
a step closer to reality.

Work done by chemists is multipronged 
— it requires not only technical skills to exe-
cute chemical reactions, but also knowledge 
to plan them. For example, designing an 
organic synthesis might involve carrying out 
retrosynthetic analyses (working backwards 
from the target molecule to identify simpler 
precursor molecules), searching databases 
for suitable reaction conditions and select-
ing the reactions that are most likely to 
achieve a pre-established research goal, such 

molecules such as trace amines, TAAR1 ago-
nists (including Ulotaront and Ralmitaront) 
and psychoactive substances (S-amphetamine 
and methamphetamine) interact with and acti-
vate TAAR1. Both research groups also report 
the structure of the human 5-HT1A receptor in 
complex with Ulotaront, to examine this com-
pound’s dual-agonist activity.

The two studies report similar architectures 
for TAAR1, with the seven transmembrane 
α-helices characteristic of GPCRs, and an addi-
tional extracellular helix (called ECL2) folded 
over as a ‘cap’ for the ligand-binding site — a 
feature often observed in receptors for clas-
sical biologically active amines, such as ser-
otonin and adrenaline. Both studies also find 
that amphetamines occupy the ligand-binding 
site, which prominently features an aspartate 
amino-acid side chain that forms hydrogen 
bonds with a tyrosine and a histidine residue. 
Some differences do emerge, however: Liu 
et al. present pharmacological data showing 
that TAAR1 generally interacts with a particular 
G protein (one that triggers signalling from the 
receptor), whereas Xu et al. observe coupling 
to other G proteins, depending on the ligand 
that is bound — a point that certainly warrants 
further clarification.

Xu et al. find that the methyl group of 
S-amphetamine extends into a shallow 
groove formed by two residues from the 
sixth and seventh transmembrane helices. By 
contrast, Liu et al. find that the trace amine 
β-phenethylamine (β-PEA) adopts a slightly 
different arrangement in the binding site 
owing to its smaller size. This might explain 
why β-PEA is a particularly potent activator of 
TAAR1 (more than ten times more potent than 
methamphetamine, for example). Xu et al. also 
identify a particular pocket in the binding site 
that is accessed by another mammalian trace 
amine, 3-iodothyronamine (T1AM).

When Xu et al. compare the structures of 
human and mouse TAAR1 in complex with 
T1AM, they find that T1AM assumes an almost 
identical binding pose in both cases. There is, 
however, one notable difference attributable 
to human TAAR1 having a different amino-acid 
residue than the mouse receptor has at a par-
ticular position in the binding site. This could 
mean that the affinities of molecules for this 
binding site differ between species — crucial 
knowledge for medicinal chemists targeting 
TAAR1, given that mice are often used as a 
model species for drug development.

Perhaps the most exciting aspect of these 
studies is how they might advance the devel-
opment of therapeutic TAAR1 agonists. For 
example, the comparisons of how Ulotaront 
binds to TAAR1 and to 5-HT1A reveal similarities 
that explain why it is an agonist of both of these 
receptors. Liu et al. also report the structure 
of TAAR1 bound to a particularly selective and 
potent TAAR1 agonist, RO5256390. This reveals 
that RO5256390 forms intimate interactions 
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with residues that other compounds do not 
make, and which probably explain its potency. 
Overall, the structures presented in the two 
studies indicate that TAAR1 ligands have a 
‘core’ binding mode, complemented by two 
extended binding modes that can be used 
by certain compounds — and which Xu et al. 
attribute to interactions formed with several 
binding pockets (Fig. 1).

One point to consider when developing 
TAAR1-targeting therapeutics is that the com-
pounds must either be lipophilic enough to 
cross the cell membrane to reach TAAR1, or 
be substrates of a transporter protein at the 
cell surface. TAAR1-targeting drugs that are 
misused, such as methamphetamine and 
S-amphetamine, are typically carried into 
cells by dopamine transporters9. Care must 
therefore be taken to ensure that new TAAR1 
agonists do not exert strong psychostimulant 
effects as a result of them being substrates for 
these transporters, to avoid the risk of people 
developing addiction8,9.

Intriguingly, the amphetamine-type stim-
ulant MDMA has been proposed as a poten-
tial ‘breakthrough therapy’ for treatment of 
post-traumatic stress disorder12. MDMA is also 
a TAAR1 agonist, albeit a weaker and less-po-
tent activator than S-amphetamine13 — suggest-
ing that TAAR1 affinity might be an important 
feature to include in the pharmacological pro-
files of drugs under development for treating 
neuropsychiatric conditions.

Taken together, the reported structures of 

TAAR1 from two species will accelerate scien-
tists’ understanding of ligand interactions with 
this receptor, and stimulate the development 
of drugs that bind selectively to it — thereby 
avoiding side effects caused by binding to 
off-target proteins. Studies with truly selec-
tive TAAR1 agonists will help to paint a clearer 
picture of how monoamine synaptic function 
regulates neurotransmitter storage, secretion 
and reuptake in health and disease.
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as maximizing product yield. But chemical 
reactions often fail to provide the product in 
acceptable yields, and the iterative process 
of searching the literature, working out what 
the next experiment (or experiments) should 
be and executing them can rapidly become 
cumbersome.

Chemists have, therefore, long aspired 
to develop automated systems to facilitate 
their work2. One of the first successes was the 
development of pipetting robots, which can be 
programmed to set up new reactions or to add 
reagents to vessels at specified times. Some 
robots are now reasonably affordable and have 
been adopted by many laboratories, freeing 
up researchers to focus on more intellectually 
challenging tasks.

In parallel, AI has made strides in chemistry, 
guiding decision-making in planning tasks that 
could hardly be automated just a few years ago 
(see ref. 3, for example). Nevertheless, those AI 
tools are typically trained to execute a single 
operation — a general understanding of var-
ious aspects of chemical research is beyond 
their capabilities. These limitations have 
frustrated the dream of establishing a work 
environment in which people supervise robots 
that are capable of planning and executing 
experiments autonomously.

However, the advent of generative pre-
trained transformers (GPTs), which are the 
workhorses behind chatbots such as ChatGPT, 
suddenly provided chemists with an important 
piece of the automation puzzle. By ‘under-
standing’ natural human language, GPTs allow 
machines to interact with people and thereby 
provide solutions to specific questions. These 
large language models are useful for a wide 
range of topics but their proficiency in chem-
istry is subpar, and they require the implemen-
tation of additional tricks — fine-tuning of the 
models — to become effective for chemistry 
applications.

With that in mind, Boiko et al. now explore 
whether it is possible to string together fine-
tuned GPTs to orchestrate self-driving labs 
using a single human prompt such as “Can you 
synthesize molecule A?” (Fig. 1). This requires 
not only an understanding of the question, 
but also a determination of the tasks that must 
be performed to complete the assignment 
successfully.

In brief, the AI Coscientist consists of 
modules that: assist literature searching to 
work out synthetic pathways and decide on 
experimental protocols; write code to ena-
ble communication between the modules; 
and search hardware documentation so that 
robots can be triggered to carry out experi-
ments remotely. Boiko et al. benchmarked 
Coscientist’s web-searching capabilities by 
asking it to identify synthetic procedures for 
seven molecules that posed different levels of 
complexity. Those examples included block-
buster drugs, such as paracetamol, aspirin and 

ibuprofen, but also other chemicals. Cosci-
entist performed better than other GPTs by 
reliably generating detailed and chemically 
accurate synthetic procedures.

More interestingly, Coscientist was able to 
design protocols and coordinate the execu-
tion of two types of reaction, known as Sono-
gashira and Suzuki–Miyaura cross coupling, 
both of which are often used in drug discovery 
to form carbon–carbon bonds. Once it had 
identified the reaction partners needed for 
the two types of cross coupling, Coscientist 
correctly calculated the amounts needed and 
programmed a pipetting robot with access to 
stock solutions of chemicals to mix them. The 
reactions successfully afforded the intended 
products. Not only that, Coscientist made 
choices about which reagents to use on the 
basis of chemically sensible reactivity rules.

As a final example, Coscientist was tasked 

with optimizing reactions to maximize prod-
uct yields, in a process that involved iteratively 
suggesting reaction conditions and using the 
outcomes to propose better experiments. Its 
performance compared favourably to that 
of Bayesian optimization (an established 
machine-learning method) when supplied 
with as few as ten example reactions. When 
the GPT was not primed with examples, its ini-
tial suggestions for reaction conditions were 
sometimes poor. But when examples were 
available, subsequent suggestions quickly 
improved with each iteration — demonstrating 
Coscientist’s ability to acquire knowledge and 
adapt its reasoning over time.

Boiko and colleagues’ findings provide a 
robust proof of principle that the current 

version of Coscientist can semi-autono-
mously conduct experiments. However, it 
still has some limitations. As pointed out by 
the authors, chemically incorrect responses 
are sometimes obtained. But these can be 
mitigated by using sophisticated prompting 
strategies (such as chain of thought4 and tree 
of thoughts5) alongside chemistry-focused 
data sources. It should also be noted that real-
world scenarios involve much more complex 
research questions than those tackled in this 
study, often involving concepts from disci-
plines other than chemistry — such as biol-
ogy, in the case of drug development. Such 
complex questions are currently beyond 
Coscientist’s reach.

Taken together, the presented examples 
are a crucial step towards the establishment 
of self-driving labs. However, Coscientist 
and other forthcoming AI technologies must 
mature before researchers can fully under-
stand their shortcomings and how they can 
best be used in science. Provided that the 
potential for misuse of large language models 
in chemistry does not lead to the introduction 
of suffocating regulations that stifle research, 
we expect many more exciting developments 
in the near future.
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Figure 1 | An artificial-intelligence system for automating chemistry research. Boiko et al.1 report 
Coscientist, an artificial-intelligence agent that uses large language models to plan and implement 
chemistry tasks on the basis of simple human prompts. For example, when asked to synthesize a particular 
molecule, Coscientist searches the Internet to devise a synthetic route; devises experimental protocols for 
the reactions needed; writes code to instruct a pipetting robot; and then runs the code so that the robot 
performs its programmed tasks. Coscientist can also learn from the outcome of reactions, and suggest 
changes to the protocols to make improvements. This iterative cycle optimizes the reactions to achieve the 
desired objective.
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