
Imagine you’re on a hill, flying a kite, and 
someone asks you to describe exactly what 
the kite is doing. “It’s over to the right, just 
above the treeline,” you might say, “and the 
wind is making it spin anticlockwise and 
move to the left.” This is an example of state 
estimation: the process of determining the 
true state of a complex system, typically from 
noisy, incomplete and often indirect observa-
tions. In a world replete with data, progress in 
data-driven modelling is rapid, but compati-
ble state-estimation techniques are lagging 
behind. On page 261, Course and Nair1 propose 
a state-estimation technique that enables effi-
cient forecasts using data, without the details 
of any underlying model. In doing so, they 
offer a fresh take on the general approach to 
model discovery.

In the case of the kite, its state is encapsu-
lated by your description of its flight at that 
moment — where it is, the direction in which it’s 
moving and its angular momentum. States can 
similarly be defined to describe how planets 
are moving, for example, or what processes 
are occurring inside a cell. The state captures 
all the essential details about a system to help 
us to understand, predict and control what 
happens next.

Unfortunately, few physical systems are 
as easily observable as a kite. Most can be 
observed only indirectly. To understand this 
fundamental limitation, imagine describing 
what the kite is doing without ever looking up; 
indeed, imagine basing the entire description 
on the tension of the line in your hand. Would 
you be as confident in your description? 
Clearly, not being able to see the kite makes 
describing its state much harder.

This is precisely why it is crucial to develop 
state-estimation techniques when measure-
ments are scarce or observations are indirect. 
State estimation is used to reconstruct the 
position and velocity of an aircraft using radar 
measurements, and to monitor the safety and 
efficiency of industrial processes. It helps to 
determine the current state of Earth’s climate, 
and estimate fluctuations in the pricing of 

assets on the stock market. It can even be used 
to ascertain the internal states of a biological 
cell. State-estimation techniques provide a 
mathematical framework to merge infor-
mation from various sources and previous 
knowledge, resulting in an improved under-
standing of the world around us.

Classical state-estimation techniques are 
typically used to study systems for which the 
mathematical equations describing their 
behaviour are known. These methods were 

applied as long ago as the 1960s, when one 
such technique, known as the Kalman filter2, 
was used to help NASA engineers guide the 
Apollo spacecraft to the Moon3. However, 
that feat was accomplished with ample knowl-
edge of the structural form of the equations 
of motion, which were derived from physical 
laws. By contrast, general models can now be 
derived automatically and algorithmically 
from observational data alone.

Indeed, techniques for data-driven model-
ling have been developed to describe complex 
systems ranging from biological processes4 
to astrophysical phenomena5. Course and 
Nair’s state-estimation technique is designed 
precisely for this new age of data-driven model 
discovery. The approach is based on a tech-
nique called Bayesian inference, which is 
used widely, but which can be computation-
ally challenging for complex systems. The 
authors’ main innovation was to calculate the 
set of parameters required for such inference 
by using stochastic approximations that can 
be computed in parallel, thereby maximizing 
efficiency. This contribution is exciting — not 
only because it is more efficient than classical 
state-estimation techniques, but also because 
it does not require the complicated equation 
solving that these methods rely on. It therefore 
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Pinpointing the state of a complex system is tricky, especially 
when the underlying mathematical equations aren’t known. 
But a data-driven technique makes light work of it — and could 
even change the way that models are formulated. See p.261

Figure 1 | Estimating the state of two orbiting black holes. Course and Nair1 developed a method that 
makes it possible to estimate the state of a system from data, without having an underlying mathematical 
model. As an example, they used the technique to predict the trajectories of two black holes orbiting each 
other, as well as the governing equations, on the basis of observations of the gravitational waves that the 
black holes generate as they spiral towards each other. The gravitational-wave observations over a short 
time period are used as training data to infer governing equations for the black holes’ motion, which are 
then used to predict the complete orbital trajectory. The authors’ estimates are well matched to a set of 
test data drawn from a physical model, and can be predicted far beyond the duration of the observations. 
The trajectories depicted lie in the orbital plane of a small black hole in motion around its more massive 
companion. (Adapted from Extended Data Fig. 4 of ref. 1.)
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presents a fresh approach to model discovery 
in mathematics.

Owing to its many uses, state estimation 
influences science, engineering and even 
public policy. For this reason, quantifying 
uncertainty is crucial for making informed 
decisions and risk assessments on the basis of 
any state prediction. Course and Nair showed 
that their method is widely applicable by con-
sidering examples ranging from modelling 
fluid flow to predicting the motion of black 
holes (Fig. 1).

The latter application built on previous 
work5 to show that the equations describing 
the motion of two black holes in orbit around 
each other can be reverse-engineered from 
measurements of the gravitational waves that 
the black holes generate before merging. The 
gravitational-wave observations over a short 
interval are used as training data to infer 
the orbital equations, and the uncertainty 
associated with this inference can then be 
used to predict and quantify the uncertainty 
in a complete orbital trajectory over a much 
longer interval.

State estimation already serves as a 
foundation for predicting and controlling 
states in myriad applications, ensuring that 
devices, machinery and complex systems 
operate safely and efficiently. But the nature 
of scientific enquiry is evolving, and interest 
in developing methods to handle the flexi-
bility and complexity of data-driven models 
is growing. Thus, whereas research in the 
past focused on creating a synergy between 
state-estimation techniques and known phys-
ical laws, current research demands that both 
model formulation and state estimation adapt 
to the intricacies of our increasingly complex, 
multifaceted and data-centric world. Like an 
airborne kite above a hill, Course and Nair’s 
work will help to test the winds of change as 
they begin to blow scientific progress in a new 
direction.
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Everything we see around us, including our-
selves, emerges out of physical interactions 
between fundamental particles. But because 
physics does not have any concept of function, 
it cannot distinguish the emergent functional 
features that are central to biology1 from 
random fluctuations. The complex structures 
of proteins, all of which have emerged to per-
form specific biological functions, are a case 
in point2,3. In addition, the laws of physics are 
timeless and eternal, unaffected by historical 
events, so cannot be used to describe how the 
past evolution of species affects their present 
and future. On page 321, Sharma et al.4 pres-
ent what they call assembly theory as a way 
to fill this gap, providing a framework to unify 
descriptions of evolutionary selection across 

physics and biology.
The existence of living beings that are well 

adapted to their environment is explained 
by Charles Darwin’s theory of natural selec-
tion. At a macro level, natural selection states 
that species evolve by initially random vari-
ants being selected for survival over many 
generations through their relative reproduc-
tive success5. But attempts to describe this 
process quantitatively, for example through 
Hamilton’s Rule and the Price equation6, just 
describe outcomes and do not relate to the 
underlying physics. The same is true of Fisher’s 
fundamental theorem of natural selection7 and 
of mathematical formulations of population 
genetics. 

Assembly theory fills this gap in an innova-
tive way by quantifying the degree of evolu-
tion and selection in an ensemble of objects. 
Conventionally, an object is defined by the 
material particles from which it is made. 
Assembly theory instead defines an object 

through its possible formation histories in an 
‘assembly space’ in which objects are made by 
joining elementary building blocks together 
recursively to form new structures.

The assembly universe is the space that 
contains all of the conceivable pathways for 
assembling any object from the same build-
ing blocks. But the parts of this space that are 
actually accessible are limited, first by the laws 
of physics, and second by historical contin-
gency: new things can be built only on the basis 
of what is already there, further constraining 
what is possible.

The authors build a quantity they call 
‘assembly’ from two variables: copy number, 
meaning the number of copies of an object 
in an ensemble; and assembly index, the 
minimum number of steps needed to produce 
an object. These combine to give an equation 
that determines the amount of selection that 
was necessary to produce an ensemble of 
objects. The authors’ key contention is that 
a transition from no selection to selection 
— such as happened when inanimate matter 
became animate — changes the pathways 
taken in assembly space in a mathematically 
definable way embodied in this equation. 
In essence, an object with a high assembly 
index that has a high copy number is evidence 
of selection. Two timescales determine the 
dynamics of the assembly process: the rate at 
which new, unique objects are formed, and 
the rate at which those objects are copied 
after they exist. If the relationship between 
these two timescales is such that resources are 
available for making more copies of existing 
objects, then selection can occur.

The assembly index of a molecule could 
possibly be determined experimentally, which 
would allow a check on theoretical calcula-
tions. Sharma et al.4 give examples of assembly 
pathways for molecular processes, including 
the joint assembly space for polymeric chains 
and processes catalysed by enzymes, as well 
as spaces in which selection has generated 
ensembles of high complexity.

The authors state that assembly theory 
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How can physics underlie the emergence of biology’s complex 
functionality? A powerful interface between physics and 
biology that describes the processes of evolution by natural 
selection provides a compelling answer. See p.321

“Attempts to describe 
evolution quantitatively  
do not relate to the 
underlying physics.”
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