
researched for close to 50 years. Dozens of 
studies have tried to understand both the 
nutrient ‘accounting’ — which explains how 
corals thrive in a desert-like environment — and 
the biology of how nutrients are acquired and 
moved between the partners3. Despite these 
decades of study, pieces of the puzzle have 
been described but a full picture that explains 
the success of corals in a nutrient-deficient 
environment has remained elusive. 

Wiedenmann and colleagues grew nine 
coral species of interest in seawater tanks for 
months during which all nutrients flowing 
into the system were precisely controlled. The 
authors found that corals incubated in water 
containing inorganic nitrogen and phospho-
rus at the low concentrations typical of healthy 
reefs increased in size and the algal population 
increased as well, to keep up with coral growth. 
In these conditions, the partnership was act-
ing together as an autotroph (generating its 
own food). 

By contrast, when corals were kept in water 
virtually free of nutrients, after about two 
months, coral growth stagnated and remark-
ably, the algal population plummeted, caus-
ing the corals to have a bleached appearance 
because algae were lost. Wiedenmann and 
colleagues found that almost no algae were 
expelled into the water. Where were they 
going?

The authors looked for clues by tracing 
labelled compounds and they found that 
labelled nitrate was taken up by algae (the coral 
host lacks the machinery to take up and use 
nitrate). Labelled nitrate was also found in high 
concentrations in host tissues, indicating that 
nitrogen-containing compounds are trans-
ferred from the algae to their host. But how 
might this happen? The authors hypothesized 
that the algae were being consumed as food, 
farmed to satisfy the host’s need for inorganic 
nitrogen and phosphorus. 

To gather more evidence, Wiedenmann 
et al. examined the size of the algal popula-
tion in healthy, growing corals. The authors 
calculated the growth rate of the algal pop-
ulation by counting the number of dividing 
cells, a measure called the mitotic index. 
Interestingly, when they modelled the popu-
lation growth rate on the basis of the mitotic 
index, the expected rate was much higher than 
the measured rate from their experiments, 
obtained by counting algae over time. The 
authors deduced that these excess algae were 
being digested by the coral host. 

Wiedenmann and colleagues also con-
ducted an experiment to look for evidence 
of nutritional contributors to the differential 
coral growth in natural environments. They 
found that corals growing near dense seabird 
populations that produce high amounts of 
nutrient-rich guano droppings took up more 
inorganic nitrogen and grew faster than did 
corals that weren’t near seabird colonies.

Nutritional flexibility of the coral–algal sym-
biosis might be the linchpin of the dominance 
of coral reefs in ocean deserts over the past 
240 million years4. Corals can do it all. Most 
species can feed on other organisms and use 
their stinging tentacles to trap microscopic 
prey (zooplankton). Those corals in symbiosis 
with algae act as autotrophs, making sugars 
with energy from the Sun and recycling nitro-
gen and phosphorus, as well as acquiring them 
from the seawater. And in a pinch, when prey 
are not available to satisfy the corals’ nutri-
tional needs, such hosts might farm their 
algal population to fill the void. This scenario 
has evolutionary implications, given that the 
success of nutritional flexibility involving 
both partners provides evidence for the idea 
that the symbiotic partnership is the unit 
that undergoes natural selection5, perhaps in 
addition to natural selection of the partners 
independently. The whole is therefore more 
than the sum of its parts. 

Wiedenmann and colleagues provide strong 
evidence of algal farming, but there is still work 
to be done to definitively prove this phenome-
non. Perhaps the direct evidence needed is to 
use an imaging method to show corals in the 
act of algal digestion. One study has captured 
images of this phenomenon for a single coral 
species6. The fact that this has not been com-
monly reported might mean that others have 
tried without success to convincingly docu-
ment such a process. The authors of that imag-
ing study6 used electron microscopy for their 
work, a high-resolution but time-intensive and 
non-quantitative approach. Modern, state-
of-the-art methods such as flow cytometry 
analysis of dissociated coral cells could enable 

high-throughput, quantitative and systematic 
sampling of coral tissue to look for evidence 
of algal degradation7. 

Finally, studies of corals in our time of 
extreme threats to the health of these reefs 
should be viewed through a lens of developing 
solutions to help reefs survive into the next 
century8. Knowledge of nutritional flexibility 
and algal farming could be used to aid under-
standing of the nutritional value of different 
algal species. It could also help to incorpo-
rate nutritional differences into strategies of 
breeding corals and symbionts that are more 
resilient to reef perturbation from tempera-
ture increases and nutrient stress. We need to 
marshal all available knowledge to help coral 
reefs remain the oases in desert oceans that are 
so crucial for the myriad services they provide 
to the planet and the people living nearby.
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Artificial intelligence (AI) has already sur-
passed the performance of human champions 
in games such as chess1, Go2 and the car-racing 
video game Gran Turismo3. However, these 
achievements all took place in virtual environ-
ments. On page 982, Kaufmann et al.4 make the 
leap to the real world with Swift — an autono-
mous AI-based drone system that can defeat 
humans in the sport of drone racing. Swift took 

on three human adversaries, all of whom are 
drone- racing champions, and clocked the fast-
est time on the racetrack.

The vehicles used in drone racing are usually 
controlled by human pilots who wear headsets 
that give them a ‘first person’ view through a 
camera attached to the drone. These pilots 
manoeuvre the drones deftly through a series 
of gates at speeds of 100 kilometres per hour 

Engineering 

Drone-racing champions 
outpaced by AI 
Guido C. H. E. de Croon

An autonomous drone has competed against human drone-
racing champions — and won. The victory can be attributed 
to savvy engineering and a type of artificial intelligence that 
learns mostly through trial and error. See p.982 
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or more (Fig. 1). The gates are positioned to 
make the tracks difficult, pushing the drones 
to undergo accelerations several times that 
of gravity.

Drone racing is highly exacting for expe-
rienced human drone pilots, but it poses 
even more challenges for AI. In a virtual envi-
ronment, resources are practically endless; 
moving to the real world means having to work 
with limited resources. This is especially true 
of drones, because the sensors and computing 
that replace the human pilot must be lifted into 
the air. Kaufmann and colleagues’ solution was 
to minimize sensing equipment: their drone’s 
sensor suite comprises a camera with a wide 
field of view, a small binocular vision system 
and a tiny inertial measurement unit — the 
device that measures acceleration and rate 
of rotation in a smart phone.

The real world is also much more unpredict-
able than a virtual one. Whereas a simulated 
race car could cruise perfectly along the tra-
jectory that is programmed for it, a single 
remote-control command issued to a drone 
can have many unexpected effects. Indeed, 
although the flight behaviours of the drones 
typically used in racing have been modelled 
extensively5, predictions still fall short of 
reality, especially at high speeds, during agile 
manoeuvres or in the presence of external 
disturbances6. These real-world effects are 
difficult to predict, and using the resulting 
imperfect models is especially problematic 
for drones that are trained with AI, because 
such approaches typically rely on learning in 
a simulated world.

The standard way of training an AI robot is 
called end-to-end learning. For drone racing, 
this approach involves learning how to map 
images to commands that specify the speed 
of the drone’s propellers. But the set of map-
pings learnt in a virtual environment often 
fails to transfer to the real world because of 
the differences between the simulated and real 
systems. This problem is called the reality gap, 
and it constitutes one of the main challenges 
in AI for robotics.

Kaufmann and colleagues’ work is a great 
example of how roboticists are overcoming 
the reality gap7. Swift is trained using a judi-
cious combination of AI-learning techniques 
and conventional engineering algorithms. The 
approach involves first processing the images 
that the drone obtains with the camera, using 
an artificial neural network that can detect 
gate corners — a task at which AI excels, given 
sufficient training data, curated by humans. 
The drone’s speed is then determined using 
proprietary software that comes with the bin-
ocular vision system.

These two sets of information (the vehicle’s 
speed and the gate locations) are then incorpo-
rated with data from the inertial measurement 
unit using conventional algorithms that esti-
mate the vehicle’s state — the same algorithms 

that feature in car navigation systems. The 
state variables here are the drone’s position, 
velocity and attitude (its orientation with 
respect to gravity).

Swift’s true innovation, however, is another 
artificial neural network that maps the drone’s 
state to commands that modify its thrust and 
rate of rotation. This network uses reinforce-
ment learning8, a technique that optimizes 
a reward received from the environment by 
means of trial and error in simulation. Apply-
ing reinforcement learning in this part of the 
algorithmic pipeline, instead of end-to-end 
learning, allowed the authors to cross the real-
ity gap using a concept known as abstraction9.

Because the state variables encode a higher 
level of abstraction than the raw images, the 
reinforcement-learning simulator does not 
need to render a rich visual environment. 
Given good state estimation, this reduces the 
differences between the simulated and real 
systems considerably. Moreover, it leads to 
much faster simulations, enabling the system 
to learn in around 50 minutes.

The actions taken by the network (that is, 
applying the desired thrust and rotation rates) 
are also at a higher abstraction level than the 
commands used to change the rotation speed 
of its propellers. This means that the AI sys-
tem can execute these actions reliably using 
an onboard controller, enabling the drone to 
cope with disturbances and effects that are not 
included in the simulation model. The small 
differences that remain between simulation 
and reality are learnt by a neural network to 
improve the simulation and refine the system’s 
strategy.

Clearly, the impact of Kaufmann and 
colleagues’ achievement extends well beyond 
drone racing. The obvious, if controversial, 
possibility is that this technology could find 
a military application — a central preoccupa-
tion of many roboticists working on AI-based 
drones. However, the results have a much 
broader range of applications. A decade ago, 
most autonomous drones were excruciatingly 
slow, getting very little range out of their bat-
teries. Although extremely fast flight will 
not be needed for most real-world uses, the 
techniques developed by Kaufman et al. will 
allow for smoother, faster and longer-range 
missions than those possible with existing 
drones. Moreover, they will help all robots, 
whether they are used for driving, cleaning 
or inspecting, to get more out of their limited 
onboard resources.

But to realize this potential, further devel-
opments will be necessary. The authors’ tests 
took place in a controlled indoor environment, 
but real drone races are held in varying envi-
ronments, both indoors and outdoors. To beat 
human pilots in any racing environment, the 
drone will have to deal with external distur-
bances such as the wind, as well as with chang-
ing light conditions, gates that are less clearly 
defined, other racing drones and many other 
factors — all of which pose sizeable challenges 
to existing AI techniques.

Given that drones acquire sensing infor-
mation more rapidly than do human pilots, 
who rely on delayed images, drones will no 
doubt eventually beat humans under these 
difficult conditions as well. The future could 
well turn, then, to ever-faster drone races that 

Figure 1 | A course for drone racing. Kaufmann et al.4 designed an autonomous AI-based drone system 
called Swift, and demonstrated that it could outpace humans who are champions in the sport of drone 
racing. The authors set a course comprising seven gates, which had to be passed through in order. The 
drones had to complete three laps — the first of which is shown here, for Swift and one human competitor. 
Swift beat three champion-level human drone-racing pilots and established the fastest time on the track. 
(Adapted from Fig. 1a of ref. 4.) 
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There is an urgent need to help people with 
neurological conditions that deprive them of 
the universal human need to communicate. 
Two articles published in Nature demonstrate 
that individuals who are unable to speak as a 
result of severe paralysis could potentially 
use implantable brain–computer interfaces 
(BCIs) to communicate at rates much greater 
than those typically achievable with alterna-
tive communication options. Willett et al.1 
(page 1031) report a device that records brain 
activity using electrodes that penetrate the 
brain’s cortex, whereas Metzger and col-
leagues’ device2 (page 1037) uses electrodes 
placed on the cortical surface. These studies 
signal a turning point in the development of 
BCI technology that aims to restore communi-
cation for people with severe paralysis.

Various neurological disorders paralyse 
muscles crucial to speech and limb function 
while sparing cognitive functions, potentially 
resulting in locked-in syndrome — in which 
individuals can no longer initiate communica-
tion and can respond to queries only with eye 
blinks or minimal movements. A diverse range 
of systems, known as alternative and augmen-
tative communication technologies, are avail-
able to help people with locked-in syndrome 
to communicate, but these require effort and 
are much slower (achieving, typically, just a 
few words per minute) than normal speech 
(about 150 words per minute). BCIs have the 
potential to solve these problems.

The first demonstration that a subject could 
be trained to increase the activity of single 

neurons, and thereby to exert a wilful action, 
was published in 1969, for a rhesus macaque 
(Macaca mulatta)3. Experiments in humans 
began4 in the late 1990s, when an electrode 
was connected to neurons in a person with 
locked-in syndrome caused by motor neu-
ron disease (amyotrophic lateral sclerosis, or 
ALS), a neurodegenerative disease. This was 
followed in 2006 by a study5 in which arrays of 
millimetre-scale electrodes (known as micro-
electrodes) were implanted into the brain of a 
person with a spinal cord injury. This microe-
lectrode array (MEA) recorded the activity of 
several hundred neurons in the motor cortex, 
the brain region responsible for the control of 
voluntary movements, and thereby controlled 
a robotic arm5. MEAs have since been used to 
enable communication, for instance by decod-
ing handwriting attempts6. 

The complementary technique of electro-
encephalography (EEG) — in which electrodes 
are placed along the scalp to record electrical 
activity in the brain — has been used since 1999 
(ref. 7) to help people with paralysis to com-
municate by controlling custom spelling soft-
ware8. Around the same time, it was discovered 
that small disc-shaped electrodes (2–3 milli-
metres in diameter) placed on the surface of 
the brain could acquire much higher-quality 
signals than could be obtained using scalp 
electrodes9. This method for recording brain 
activity is known as electrocorticography 
(ECoG). 

In the early 2000s, ECoG electrodes 
were used in people undergoing surgery 

for drug-resistant epilepsy, to record brain 
signals associated with speech and body 
movements10. This eventually led to the devel-
opment of the first fully embedded ECoG 
device, which enabled a person with locked-in-
syndrome to use a typing program at home11. 
To date, about 50 people with varying degrees 
of paralysis have been implanted with BCIs for 
communication, most of whom use MEAs.

Metzger et al. now present findings involv-
ing a paralysed participant who, 17  years 
before she enlisted for the study, experi-
enced a brainstem stroke that made her 
speech unintelligible. The authors’ BCI system 
incorporates a silicon sheet embedded with 
253 ECoG electrodes, each of which record the 
average activity of many thousands of neurons 
(Fig. 1a). The device was surgically implanted 
over the left ‘face area’ of the sensorimotor 
cortex — the part of the brain that serves oral 
and facial muscles, including the vocal tract. 
The study builds on previous reports of ECoG 
recordings, including a similar BCI that was 
implanted in another person who had had a 
brainstem stroke12.

Brain-to-text decoding was achieved by 
the combination of two systems: a recurrent 
neural network (RNN, a type of artificial neural 
network), which ran algorithms that decipher 
brain activity associated with movements of 
articulators (parts of the vocal tract); followed 
by a language model that composed sen-
tences at a rate of 78 words per minute (albeit 
with a 25.5% word error rate) from a set of 
1,024 words. Alternatively, brain signals were 
translated directly to synthesized speech, at 
a word error rate of 54.4% for the 1,024-word 
vocabulary; the error rate decreased for 
smaller vocabularies (8.2% for a 119-word 
vocabulary). The BCI also decoded attempted 
facial expressions, which it reproduced using 
a digital avatar, thereby providing visual feed-
back to the text or speech that greatly enriches 
the participant’s ability to communicate. Over-
all, the device offers substantial improvements 
in vocabulary size, speed of communication 
and versatility of speech decoding compared 
with previously reported ECoG BCIs. 

Willett et al.1 used two MEAs (containing a 
total of 128 electrodes) to record from small 
patches of the left sensorimotor face area in a 
participant who was unable to speak intelligi-
bly owing to ALS (Fig. 1b). As in Metzger and 
colleagues’ device, RNNs and language models 
were used to translate brain signals into text 
and were trained and tested on vocabularies 
of different sizes. Using the device, the partic-
ipant was able to communicate at an average 
rate of 62 words per minute, with a word error 
rate of 23.8% for a 125,000-word vocabulary 
and 9.1% for a 50-word vocabulary. 

The RNN was trained using recordings of 
neural activity collected when the partici-
pant attempted to speak 260–480 sentences 
presented on a monitor — the overall process 

pit autonomous drones against each other10 — 
a development that will keep pushing the 
boundaries of this widely relevant technology.
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Clinical neuroscience

Speech-enabling brain 
implants pass milestones
Nick F. Ramsey & Nathan E. Crone

Two brain–computer interfaces have been developed that 
bring unprecedented capabilities for translating brain signals 
into sentences — at speeds close to that of normal speech, and 
with vocabularies exceeding 1,000 words. See p.1031 & p.1037 
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