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are much larger than neutron stars, so their 
moments of inertia can be more than 100,000 
times larger. They also rotate much more 
slowly than do neutron stars, which is consist-
ent with the observed 21-minute period. How-
ever, although thousands of white dwarfs have 
been observed in our Galaxy, many of which 
are much closer to Earth than GPM J1839−10, 
only one has shown even remotely comparable 
radio emission. That object, known as Ar Sco, 
has a pulsation period of two minutes, and is 
around 1,000 times less luminous than GPM 
J1839−10 (ref. 8).

Another possibility, which is perhaps less 
speculative, is that the source is a magnetar, 
an extreme form of neutron star thought to 
bear the Universe’s strongest known mag-
netic fields9,10. Magnetars have rotation rates 
that are slow compared with those of radio 
pulsars11 — although nowhere near as slow 
as that of GPM J1839−10. They can also have 
radio emission at least as luminous as that of 
GPM J1839−10 (ref. 12). But magnetars com-
monly undergo sudden episodes in which they 
emit lots of X-ray bursts for a few weeks, and 
then go quiet. Hurley-Walker et al. found no 
evidence for bursts in their X-ray observations 
of GPM J1839−10 while it was emitting radio 
pulses. 

And although magnetars constantly emit 
X-rays, they typically produce radio emission 
that appears suddenly, at the same time as 
an X-ray outburst (see, for example, ref. 13), 
and then fades on a timescale of months. This 
was true of the 18-minute source, GLEAM 
XJ162759.5−523504.3, which faded after just 
three months. By contrast — and amazingly — 
Hurley-Walker et al. show that GPM J1839−10 
has been emitting radiation at radio frequen-
cies for the past three decades, much longer 
than any bona fide magnetar found so far.

The puzzling long-term activity of this newly 
recognized source constrains any models 
invoked to explain it. And it might have gone 
unnoticed, were it not for the foresight of radio 
astronomers who meticulously archived and 
made public their voluminous data, in the 
hope that doing so would serve scientists in 
the future. Radio observations are not special 
in this respect. Astronomical data from across 
the electromagnetic spectrum have long been 
carefully catalogued and made freely availa-
ble, resulting in a multitude of discoveries akin 
to that reported here. In this way, astronomy 
had set a high standard for open science well 
before other fields made it a priority. 

The bounty yet hidden in astronomical 
archives will continue to be tapped into, and 
will no doubt help to answer many more ques-
tions. One key issue raised by Hurley-Walker 
et al. is whether sources such as GPM J1839−10 
and GLEAM XJ162759.5−523504.3 are unusual, 
or whether there exists a substantial popula-
tion of extremely slow pulsars awaiting discov-
ery in the Milky Way. The astronomical archive 

will surely be of great assistance in answering 
this question. Only time will tell what else lurks 
in these data, and what observations across 
many astronomical timescales will reveal.
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Daily news headlines document the use and 
misuse of generative artificial intelligence 
(AI) — a type of AI model that can produce 
realistic content, such as text and videos. 
Public enthusiasm for these models has been 
tempered with trepidation, and the broader 
discussion about this technology is mirrored 
by a similar one among atmospheric scientists, 
some of whom have started to incorporate 
generative AI into their weather-forecasting 
models. Two groups now report such models: 
Bi et al.1 (page 533) present a model for fore-
casting weather up to seven days in the future, 
and Zhang et al.2 (page 526) describe one for 
predicting precipitation up to three hours 
ahead of time. Both studies are impressive, 
and together they provide a timely opportu-
nity to examine the benefits and risks of these 
new developments.

Conventional weather-prediction mod-
els are based on physical equations that are 
implemented using numerical models — an 
approach known as numerical weather pre-
diction. Generative AI weather models work 
differently: instead of making predictions on 
the basis of an understanding of physics, they 
forecast weather patterns that are statistically 
plausible given historical measurements. This 
approach has proved so promising that it has 
raised the possibility of a paradigm shift, in 
which AI-based models could replace numer-
ical weather prediction completely.

At the heart of a numerical weather-prediction 

model is the dynamical core or ‘dycore’, 
in which numerical equations encode the 
underlying physical constraints: conser-
vation of momentum, mass and energy.  
However, these equations take a long time to 
solve, even with the fastest computers, and 
they result in predictions with a resolution 
of only about 28  kilometres between grid 
points (see go.nature.com/3cyh4ck), which 
is too coarse to model small-scale physical 
processes, such as clouds, radiation and  
turbulence.

This problem can be circumvented by 
expressing the state of the physical system 
as a parameter, or set of parameters, but  
this replacement introduces a source of 
forecast error. An alternative approach, pro-
posed almost two decades ago3, is to keep 
the dycore, but to replace parameterizations 
with much faster AI models. Bi et al. and Zhang 
et al. have both taken an even more radical 
approach, by replacing the entire numerical 
weather-prediction system with an AI model. Bi 
and colleagues’ AI model is trained entirely on 
observations, whereas Zhang and co-workers’ 
AI model is trained on both physical equations 
and observations.

Bi and colleagues’ model is called 
Pangu-Weather, and it forecasts temper-
ature, wind speed and pressure, as well as 
other variables. The model produces predic-
tions about 10,000 times faster than numer-
ical weather-prediction models at the same 
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Two models demonstrate the enormous potential that 
artificial intelligence holds for weather prediction. But the 
risks involved demand that meteorologists learn to design, 
evaluate and interpret such systems. See p.526 & p.533 

Nature  |  Vol 619  |  20 July 2023  |  473

©
 
2023

 
Springer

 
Nature

 
Limited.

 
All

 
rights

 
reserved. ©

 
2023

 
Springer

 
Nature

 
Limited.

 
All

 
rights

 
reserved.



spatial resolution, and with comparable accu-
racy. Pangu-Weather provides forecasts for a 
larger number of discrete height levels above 
Earth’s surface than do its AI predecessors, 
such as FourCastNet4. It also uses a 3D model 
to ensure that predictions are consistent 
between these levels, and to reliably capture 
atmospheric states at different pressures, 
thereby improving accuracy.

Pangu-Weather is adept at generating 
medium-range forecasts, but the model does 
not attempt to predict precipitation, which 
is the most difficult weather variable to fore-
cast5. This challenge is taken up by Zhang and 
colleagues, with their short-term forecasting 
model to predict rain on a timescale of hours. 
The model, known as NowcastNet, focuses 
exclusively on this task, and succeeds in pro-
ducing sharper and more realistic meteorolog-
ical features than is possible with its AI-based 
predecessors, such as PredRNN6.

In principle, increases in computational 
speed, such as those reported by Bi and 
colleagues, could yield immense benefits. 
Agencies responsible for numerical weather 
predictions have limited budgets for com-
puting resources. Being able to do more with 
less will allow these agencies to address fore-
cast priorities that are currently out of reach, 
such as fire spread, atmospheric chemistry 
and smoke patterns, and vegetation changes. 
Speed increases could also lead to higher-res-
olution models, and to an expansion of the use 
of global models in place of regional ones to 

reduce the impact of numerical errors arising 
at the boundaries between regions. They could 
allow forecasters to generate large ensembles 
of predictions that represent a range of future 
weather possibilities, and to integrate physical 
processes (such as the spread of fire) that have 
pronounced effects on air quality and human 
health, but take a long time to run on standard 
computers.

However, AI also presents potential risks for 
both nowcasting and global weather predic-
tions. Three of these risks pertain to extreme 
events, which are more likely to occur in a 
changing climate. First, depending on the 
duration of the data records used to train the 
AI model, extreme events, such as ‘monster 
storms’ that currently occur only a few times 
a century, might be undersampled. Second, AI 
models for weather forecasting are typically 
optimized by taking locally accurate error 
measurements and averaging them across 
large regions. This could lead to problems in 
predicting meteorological features, such as 
severe storms, fronts or tropical cyclones. And 
third, the behaviour of an AI system is often 
unpredictable when the program operates 
under conditions that it has never encoun-
tered before7. An extreme weather event might 
therefore trigger highly erratic predictions.

Other issues are more technical in nature. 
In building models that predict several var-
iables, such as Pangu-Weather, researchers 
must take extra precautions to consider 
dependencies between those variables. 

Numerical weather-prediction models have 
these dependencies built in, but AI models do 
not. Furthermore, many AI models are still only 
proof-of-concept and do not include all the 
variables that a forecaster would want to see, 
such as precipitation type — for example, rain, 
hail or snow — or the physical factors involved 
in precipitation8. Finally, complex models, 
such as Pangu-Weather, require substantial 
computational resources, and only large com-
panies can currently afford to develop them.

Given both the potential benefits and risks 
associated with AI models for weather predic-
tion, we would like to issue a call to action. Now 
is the time for weather forecasters (Fig. 1) to 
get involved in ensuring that AI-based weath-
er-prediction models are well suited to their 
tasks, and to learn how to interpret their 
predictions. This point is crucial, because 
AI models behave differently from models 
based on physics, so understanding their 
predictions requires specialized training. And 
although such complex models are not trivial 
to develop, they can be run easily on standard 
computers.

For example, we are using code that has 
been made available by the developers of 
FourCastNet (https://github.com/NVlabs/
FourCastNet)4 to generate real-time forecasts 
that can be compared with numerical weath-
er-prediction forecasts and satellite observa-
tions to provide feedback to the developers. 
A key requirement of such initiatives is that 
publications are accompanied by easy-to-run 
code. On this basis, we think that journal edi-
tors should mandate the availability of such 
code. We hope that researchers will take 
advantage of the access to the Pangu-Weather 
and NowcastNet code to further evaluate the 
models, provide feedback and help meteorolo-
gists to decide on the appropriate use of these 
models with public safety in mind. 
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Figure 1 | Weather forecasters must vet artificial-intelligence weather-prediction models. There is a 
pressing need for scientists to learn how to use and evaluate weather-prediction models that use artificial 
intelligence to ensure that they meet the needs of forecasters and thus contribute to — and not endanger — 
public safety.
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