
practices in oil palm4,5 and in other mono-
culture crops, such as coffee, cocoa and
rice. The results also help to fill knowledge
gaps that will support conservation efforts
during the United Nations Decade on Eco-
system Restoration, which began in 2021
(see go.nature.com/3mbj9a8).

Of course, as for many such experiments,
this is just the beginning. Trees and palms
are long-lived, after all. Before a convincing
argument can be made for the widespread
adoption of the intervention — and before the
approach should be considered for incorpora-
tion into certification standards, such as the
Round table on Sustainable Palm Oil — several
questions, including the following, need to be
answered. What area and spatial distribution
of tree islands would be needed to maximize
the positive environmental effects while sus-
taining oil-palm yields? Should the establish-
ment of such islands be recommended for all
industrial palm estates? How can connectivity
between habitats be optimized (for example,
by using tree islands as ‘stepping stones’ for
species, or by protecting vegetation along
rivers and streams)?

What sorts of agroforestry practice might
be recommended for the strikingly different
contexts of large, homogeneous industrial oil-
palm plantations compared with smallholder
plots, which tend to be part of mosaic land-
scapes? Indonesia and Malaysia, which supply
more than 80% of global oil-palm demands
(see go.nature.com/42hhyjr), are dominated
by sprawling industrial-scale estates2. How-
ever, research in Indonesia shows that, by
2030, the total area of smallholder oil-palm
plots is expected to exceed 60% of the total
national acreage6.

Experiments in Brazil7 indicate that, for
smallholders, growing oil palm in a complex
agroforestry system can increase oil produc-
tivity per palm and enable a more diversified
income stream through the sale of other prod-
ucts (such as fruits, timber or cassava); such
an approach might also avoid the need for
fertilizer or pesticides. Zemp and colleagues
suggest that smallholders adopting the use of
tree islands would also benefit from improved
ecosystem benefits (ecosystem services),
lower susceptibility to disturbance and the
diversification of risk. However, because it is
unlikely that agroforestry practices will gain
traction with large industrial producers, the
tree- island option (either by retaining some
vegetation when clearing the land or estab-
lishing tree islands after the oil-palm crop is
planted) seems more adapted for adoption
in industrial plantations than are agroforestry
approaches.

What will happen as the trees continue to
grow? On the basis of this study and previous
measurements by members of the same team8,
one might expect an eventual reduction in
productivity per palm in and around the tree

islands as other species grow and compete
for resources with oil palms (Fig. 1). How will
this affect production on the landscape scale?
What will happen after 25 years, when the
palms need to be cut and replanted?

Finally, what are the economics of these
 different models of oil-palm management?
That aspect of research is currently missing,
because published papers have focused chiefly
on demonstrating that agroforestry interven-
tions do not affect productivity at the level of
a plot (termed stand level).

The reality is that, despite its growing envi-
ronmental footprint, oil-palm cultivation
is not going away. With an estimated 2022
global market value of US$53 billion (see
go.nature.com/41hj7xe), it is a key contrib-
utor to national economies and local liveli-
hoods. Despite some progress in developing
cultured or synthetic oil, the crop is simply too
lucrative9 for industrial developers and rural
communities to pass it up. Agroforestry-based
approaches are not a substitute for protect-
ing remaining forests, yet this work by Zemp
and colleagues, as well as other studies,

demonstrates that the use of tree islands could
go a long way to helping restore biodiversity
and ecosystem health in oil-palm landscapes.

Robert Nasi is at the Center for International
Forestry Research and World Agroforestry
(CIFOR-ICRAF), Bogor 16115, Indonesia.
e-mail: r.nasi@cifor-icraf.org

1. Chiriacò, M. V., Bellotta, M., Jusić, J. & Perugini, L.
Environ. Res. Lett. 17, 063007 (2022).

2. Descals, A. et al. Earth Syst. Sci. Data 13, 1211–1231 (2021).
3. Zemp, D. C. et al. Nature 618, 316–321 (2023).
4. Khasanah, N. et al. Front. Sustain. Food Syst. 3, 122 (2020).
5. Jezeer, R. & Pasiecznik, N. (eds) Exploring Inclusive Palm

Oil Production (Tropenbos International, 2019); available
at https://go.nature.com/3jvzkam

6. Schoneveld, G. C., Ekowati, D., Andrianto, A.
& van der Haar, S. Environ. Res. Lett. 14, 014006 (2019).

7. Miccolis, A., van Noordwijk, M. & Amaral, J. in
Tree Commodities and Resilient Green Economies
in Africa (eds Minang, P. A., Duguma, L. A.
& van Noordwijk, M.) Ch. 27 (World Agroforestry, 2021);
available at https://go.nature.com/3jfvuq9

8. Gérard, A. et al. Agric. Ecosyst. Environ. 240, 253–260 (2017).
9. Qaim, M., Sibhatu, K. T., Siregar, H. & Grass, I. Annu. Rev.

Resour. Econ. 12, 321–344 (2020).

The author declares no competing interests.
This article was published online on 24 May 2023.

For decades, the computing industry relied
on Moore’s law: as transistors became ever
smaller, the number that could be crammed
onto a computer chip seemed to double
every two years, enabling a similar leap in
computing power. But Moore’s law has a
natural limit, so software optimization has
become just as crucial as miniaturization. On
page 257, Mankowitz et al.1 reveal a key role
for deep learning in this process, by showing
that code generated by artificial intelligence
(AI) can improve the efficiency with which the
C++ programming language sorts items in a
list. Although seemingly mundane, this task
is needed in computer programs the world
over, and the AI version is now baked into a
widely used implementation of the C++ library.
Perhaps even more remarkably, the AI system
can improve the code without any previous
knowledge of the problem itself.

To understand the implications of
Mankowitz and colleagues’ result, it is useful to

first understand the way in which programs are
translated into instructions that tell a machine
how to flip its ones and zeroes. For a program-
ming language such as C++, a program called
a compiler takes source code and converts it
into a set of ‘assembly’ instructions that are,
in turn, translated into machine-level code.

The conventional approach2 to improving
the performance of a piece of source code was
to apply a series of transformations that were
guaranteed to preserve the behaviour of the
program while changing performance char-
acteristics such as speed and memory usage.
Modern compilers can improve performance
substantially by applying such optimizations,
but the benefits are constrained by the limited
set of transformation rules available to them,
and by the difficulty of predicting whether a
given change will improve performance.

In the late 1990s and early 2000s, there
was a push to do better by searching through
different sequences of transformations to find

Computer science

AI learns to write sorting
software on its own
Armando Solar-Lezama

Deep reinforcement learning has been used to improve
computer code by treating the task as a game — with no special
knowledge needed on the part of the player. The result has
already worked its way into countless programs. See p.257

240 | Nature | Vol 618 | 8 June 2023

News & views

©

2023

Springer

Nature

Limited.

All

rights

reserved. ©

2023

Springer

Nature

Limited.

All

rights

reserved.

the optimal one for a specific machine. This
process — known as autotuning — was particu-
larly successful when it could be tailored to
a particular type of problem3,4. For example,
remarkable performance improvements were
possible for mathematical operations such as
fast Fourier transforms5 and matrix multiplica-
tion6, as well as for signal processing7. In many
cases, these approaches surpassed the perfor-
mance achievable by human developers8, but
building them required tremendous effort.
For each new system, many years of research
went into the careful design of the way in which
computational patterns would be represented
in the machine in a problem-specific man-
ner, and the transformation rules that would
allow the system to search through different
patterns efficiently.

In the late 2000s and early 2010s, a technol-
ogy emerged that could potentially eliminate
the need for tailored transformation rules. The
approach was called program synthesis, and it
worked by directly searching for sequences of
instructions that could be proved to be equiv-
alent to the original code9. Such techniques
could improve performance either by impos-
ing constraints on the code (such as forcing
it to minimize the number of instructions10)
or by leveraging feedback about the code’s
performance11. The main limitation of this
approach, however, was the complexity of
searching for long sequences of instructions
that achieved a correct result. This complexity
meant that these techniques could be applied
only to very small code fragments.

Program synthesis got a major boost, how-
ever, with the advent of deep learning. Early
work showed that a neural network trained on a
corpus of programs could guide the search for
a program that satisfied a specification12. That
research eventually led to systems that were
able to complete challenging programming
tasks when prompted with natural-language
descriptions of problems. One such system
is AlphaCode (ref. 13), which was developed
by members of same team as Mankowitz and
colleagues. A limitation of those approaches,
however, was that they excelled mostly when
solving problems that were similar to those in
their training corpus; their applicability was
restricted when it came to new programming
challenges. Mankowitz and colleagues have
now overcome this limitation.

The authors used deep reinforcement
learning in an approach that views the
program-synthesis problem as a game played
by a single player: the program synthesizer,
which the authors call AlphaDev. At each step
in the game, the synthesizer must choose a
move that corresponds to an instruction to
add to the program. And with each move, the
system responds by running the instruction
on the processor, then checking whether the
result is correct. If it is, the algorithm assigns a
reward based on the program’s performance.

The power of this approach comes from the
fact that the system can learn to generate
efficient programs on the basis of a reward
signal, without needing any guidance from
training examples. Perhaps surprisingly, it
leads to genuine innovation in the approach to
tasks as simple and as fundamental as sorting
a list of items (Fig. 1).

Previous work showed the promise of
deep reinforcement learning for program
synthesis14, but this research generally used
simplified problem-specific languages and, in
many cases, relied on training data to help the
learning process. By contrast, Mankowitz et al.
devised an approach that needs no such data
and that targets an assembly-level language.
This is considerably more difficult — and more
useful — than previous achievements, because
the synthesis process encodes no knowledge
about the problem, either in the choice of lan-
guage or in the training algorithm itself. The
authors demonstrate the generality of their
approach by using an algorithm built for one
type of problem to synthesize programs for
two completely different problem types.

The key ingredient ensuring the success
of Mankowitz and colleagues’ approach is a
neural architecture that can capture the cur-
rent state of the computation and the current
sequence of machine-level instructions, and
can then make independent predictions about
their probable correctness and performance.

The programs that can be optimized by their
system are still relatively small. However, the

generality of the approach, and its ability to
operate without any previous knowledge of
the problem, make it a crucial step towards
high-performance programming with minimal
intervention from experts.

Armando Solar-Lezama is in the Computer
Science & Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA.
e-mail: asolar@csail.mit.edu

1. Mankowitz, D. J. et al. Nature 618, 257–263 (2023).
2. Bacon, D. F., Graham, S. L. & Sharp, O. J. ACM Comput.

Surv. 26, 345–420 (1994).
3. Balaprakash, P. et al. Proc. IEEE 106, 2068–2083 (2018).
4. Vuduc, R. W. in Encyclopedia of Parallel Computing

(ed. Padua, D.) 102–105 (Springer, 2011).
5. Frigo, M. ACM SIGPLAN Not. 34, 169–180 (1999).
6. Whaley, R. C., Petitet, A. & Dongarra, J. J. Parallel Comput.

27, 3–35 (2001).
7. Püschel, M. et al. Proc. IEEE 93, 232–275 (2005).
8. Franchetti, F. & Püschel, M. Proc. Int. Parallel Distributed

Process. Symp. (IEEE, 2003).
9. Alur, R. et al. in Formal Methods in Computer-Aided

Design 2013 1–8 (IEEE, 2013).
10. Barthe, G., Crespo, J. M., Gulwani, S., Kunz, C.

& Marron, M. ACM SIGPLAN Not. 48, 123–134 (2013).
11. Schkufza, E., Sharma, R. & Aiken, A. in Proc. 18th Int. Conf.

Archit. Support for Program. Lang. Oper. Syst. 305–316
(IEEE, 2013).

12. Devlin, J. et al. in Proc. 34th Int. Conf. Mach. Learn. Vol. 70
(eds Precup, D. & Teh, Y. W.) 990–998 (JMLR, 2017).

13. Li, Y. et al. Science 378, 1092–1097 (2022).
14. Ellis, K. et al. in Proc. 33rd Neural Inf. Process. Syst.

(eds Wallach, H., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F. & Fox, E. B.) 9169–9178 (Curran Associates,
2019).

The author declares competing interests. See go.nature.
com/3qmfpha for details.

4 numbers? Sort
4 numbers

No

Yes

a b

L > 2

L = 2L < 2

Sort
3 numbers Sort first

3 numbers

Sort 4 numbers,
3 of which are sorted

Sort
2 numbers

Yes

Sort
2 numbers

Yes

3 numbers?

No

2 numbers?

No

Yes
3 numbers?

No

Input sequence = (8, 6, 7, 2)

(2, 6, 7, 8)

(2, 6, 7, 8)

Input sequence = (8, 6, 7, 2)

Compare
sequence length

(L) to 2

Figure 1 | An AI-generated approach to sorting. Mankowitz et al.1 used deep reinforcement learning
to improve the efficiency with which the C++ programming language sorts items in a list. The authors’
algorithm used a reward-based system, without the need for any problem-specific training. In one set of
experiments, the algorithm focuses on producing routines that sort short sequences of numbers, which
are then used as building blocks to sort longer sequences. a, This is one approach to sorting a sequence
containing up to four numbers, involving three separate routines for sorting two, three or four numbers. Red
highlights the path taken to sort the example sequence (8, 6, 7, 2). b, Mankowitz and colleagues’ algorithm
generated a different procedure — incrementally sorting sequences of length four by first sorting the first
three elements. This method for sorting is now part of the standard C++ library used worldwide. (Adapted
from Fig. 4 of ref. 1.)

Nature | Vol 618 | 8 June 2023 | 241

©

2023

Springer

Nature

Limited.

All

rights

reserved. ©

2023

Springer

Nature

Limited.

All

rights

reserved.

