
practices in oil palm4,5 and in other mono-
culture crops, such as coffee, cocoa and 
rice. The results also help to fill knowledge 
gaps that will support conservation efforts 
during the United Nations Decade on Eco-
system Restoration, which began in 2021 
(see go.nature.com/3mbj9a8).

Of course, as for many such experiments, 
this is just the beginning. Trees and palms 
are long-lived, after all. Before a convincing 
argument can be made for the widespread 
adoption of the intervention — and before  the 
approach should be considered for incorpora-
tion into certification standards, such as the 
Round table on Sustainable Palm Oil — several 
questions, including the following, need to be 
answered. What area and spatial distribution 
of tree islands would be needed to maximize 
the positive environmental effects while sus-
taining oil-palm yields? Should the establish-
ment of such islands be recommended for all 
industrial palm estates? How can connectivity 
between habitats be optimized (for example, 
by using tree islands as ‘stepping stones’ for 
species, or by protecting vegetation along 
rivers and streams)?

What sorts of agroforestry practice might 
be recommended for the strikingly different 
contexts of large, homogeneous industrial oil-
palm plantations compared with smallholder 
plots, which tend to be part of mosaic land-
scapes? Indonesia and Malaysia, which supply 
more than 80% of global oil-palm demands 
(see go.nature.com/42hhyjr), are dominated 
by sprawling industrial-scale estates2. How-
ever, research in Indonesia shows that, by 
2030, the total area of smallholder oil-palm 
plots is expected to exceed 60% of the total 
national acreage6. 

Experiments in Brazil7 indicate that, for 
smallholders, growing oil palm in a complex 
agroforestry system can increase oil produc-
tivity per palm and enable a more diversified 
income stream through the sale of other prod-
ucts (such as fruits, timber or  cassava); such 
an approach might also avoid the need for 
fertilizer or pesticides. Zemp and colleagues 
suggest that smallholders adopting the use of 
tree islands would also benefit from improved 
ecosystem benefits (ecosystem services), 
lower susceptibility to disturbance and the 
diversification of risk. However, because it is 
unlikely that agroforestry practices will gain 
traction with large industrial producers, the 
tree- island option (either by retaining some 
vegetation when clearing the land or estab-
lishing tree islands after the oil-palm crop is 
planted) seems more adapted for adoption 
in industrial plantations than are agroforestry 
approaches.

What will happen as the trees continue to 
grow? On the basis of this study and previous 
measurements by members of the same team8, 
one might expect an eventual reduction in 
productivity per palm in and around the tree 

islands as other species grow and compete 
for resources with oil palms (Fig. 1). How will 
this affect production on the landscape scale? 
What will happen after 25 years, when the 
palms need to be cut and replanted?

Finally, what are the economics of these 
 different models of oil-palm management? 
That aspect of research is currently missing, 
because published papers have focused chiefly 
on demonstrating that agroforestry interven-
tions do not affect productivity at the level of 
a plot (termed stand level).

The reality is that, despite its growing envi-
ronmental footprint, oil-palm cultivation 
is not going away. With an estimated 2022 
global market value of US$53 billion (see 
go.nature.com/41hj7xe), it is a key contrib-
utor to national economies and local liveli-
hoods. Despite some progress in developing 
cultured or synthetic oil, the crop is simply too 
lucrative9 for industrial developers and rural 
communities to pass it up. Agroforestry-based 
approaches are not a substitute for protect-
ing remaining forests, yet this work by Zemp 
and colleagues, as well as other studies, 

demonstrates that the use of tree islands could 
go a long way to helping restore biodiversity 
and ecosystem health in oil-palm landscapes.
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For decades, the computing industry relied 
on Moore’s law: as transistors became ever 
smaller, the number that could be crammed 
onto a computer chip seemed to double 
every two years, enabling a similar leap in 
computing power. But Moore’s law has a 
natural limit, so software optimization has 
become just as crucial as miniaturization. On 
page 257, Mankowitz et al.1 reveal a key role 
for deep learning in this process, by showing 
that code generated by artificial intelligence 
(AI) can improve the efficiency with which the 
C++ programming language sorts items in a 
list. Although seemingly mundane, this task 
is needed in computer programs the world 
over, and the AI version is now baked into a 
widely used implementation of the C++ library. 
Perhaps even more remarkably, the AI system 
can improve the code without any previous 
knowledge of the problem itself. 

To understand the implications of 
Mankowitz and colleagues’ result, it is useful to 

first understand the way in which programs are 
translated into instructions that tell a machine 
how to flip its ones and zeroes. For a program-
ming language such as C++, a program called 
a compiler takes source code and converts it 
into a set of ‘assembly’ instructions that are, 
in turn, translated into machine-level code. 

The conventional approach2 to improving 
the performance of a piece of source code was 
to apply a series of transformations that were 
guaranteed to preserve the behaviour of the 
program while changing performance char-
acteristics such as speed and memory usage. 
Modern compilers can improve performance 
substantially by applying such optimizations, 
but the benefits are constrained by the limited 
set of transformation rules available to them, 
and by the difficulty of predicting whether a 
given change will improve performance. 

In the late 1990s and early 2000s, there 
was a push to do better by searching through 
different sequences of transformations to find 
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AI learns to write sorting 
software on its own
Armando Solar-Lezama

Deep reinforcement learning has been used to improve 
computer code by treating the task as a game — with no special 
knowledge needed on the part of the player. The result has 
already worked its way into countless programs. See p.257
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the optimal one for a specific machine. This 
process — known as autotuning — was particu-
larly successful when it could be tailored to 
a particular type of problem3,4. For example, 
remarkable performance improvements were 
possible for mathematical operations such as 
fast Fourier transforms5 and matrix multiplica-
tion6, as well as for signal processing7. In many 
cases, these approaches surpassed the perfor-
mance achievable by human developers8, but 
building them required tremendous effort. 
For each new system, many years of research 
went into the careful design of the way in which 
computational patterns would be represented 
in the machine in a problem-specific man-
ner, and the transformation rules that would 
allow the system to search through different 
patterns efficiently. 

In the late 2000s and early 2010s, a technol-
ogy emerged that could potentially eliminate 
the need for tailored transformation rules. The 
approach was called program synthesis, and it 
worked by directly searching for sequences of 
instructions that could be proved to be equiv-
alent to the original code9. Such techniques 
could improve performance either by impos-
ing constraints on the code (such as forcing 
it to minimize the number of instructions10) 
or by leveraging feedback about the code’s 
performance11. The main limitation of this 
approach, however, was the complexity of 
searching for long sequences of instructions 
that achieved a correct result. This complexity 
meant that these techniques could be applied 
only to very small code fragments. 

Program synthesis got a major boost, how-
ever, with the advent of deep learning. Early 
work showed that a neural network trained on a 
corpus of programs could guide the search for 
a program that satisfied a specification12. That 
research eventually led to systems  that were 
able to complete challenging programming 
tasks when prompted with natural-language 
descriptions of problems. One such system 
is AlphaCode (ref. 13), which was developed 
by members of same team as Mankowitz and 
colleagues. A limitation of those approaches, 
however, was that they excelled mostly when 
solving problems that were similar to those in 
their training corpus; their applicability was 
restricted when it came to new programming 
challenges. Mankowitz and colleagues have 
now overcome this limitation. 

The authors used deep reinforcement 
learning in an approach that views the 
program-synthesis problem as a game played 
by a single player: the program synthesizer, 
which the authors call AlphaDev. At each step 
in the game, the synthesizer must choose a 
move that corresponds to an instruction to 
add to the program. And with each move, the 
system responds by running the instruction 
on the processor, then checking whether the 
result is correct. If it is, the algorithm assigns a 
reward based on the program’s performance. 

The power of this approach comes from the 
fact that the system can learn to generate 
efficient programs on the basis of a reward 
signal, without needing any guidance from 
training examples. Perhaps surprisingly, it 
leads to genuine innovation in the approach to 
tasks as simple and as fundamental as sorting 
a list of items (Fig. 1). 

Previous work showed the promise of 
deep reinforcement learning for program 
synthesis14, but this research generally used 
simplified problem-specific languages and, in 
many cases, relied on training data to help the 
learning process. By contrast, Mankowitz et al. 
devised an approach that needs no such data 
and that targets an assembly-level language. 
This is considerably more difficult — and more 
useful — than previous achievements, because 
the synthesis process encodes no knowledge 
about the problem, either in the choice of lan-
guage or in the training algorithm itself. The 
authors demonstrate the generality of their 
approach by using an algorithm built for one 
type of problem to synthesize programs for 
two completely different problem types. 

The key ingredient ensuring the success 
of Mankowitz and colleagues’ approach is a 
neural architecture that can capture the cur-
rent state of the computation and the current 
sequence of machine-level instructions, and 
can then make independent predictions about 
their probable correctness and performance. 

The programs that can be optimized by their 
system are still relatively small. However, the 

generality of the approach, and its ability to 
operate without any previous knowledge of 
the problem, make it a crucial step towards 
high-performance programming with minimal 
intervention from experts.

Armando Solar-Lezama is in the Computer 
Science & Artificial Intelligence Laboratory, 
Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139, USA. 
e-mail: asolar@csail.mit.edu
 
1. Mankowitz, D. J. et al. Nature 618, 257–263 (2023).
2. Bacon, D. F., Graham, S. L. & Sharp, O. J. ACM Comput. 

Surv. 26, 345–420 (1994).
3. Balaprakash, P. et al. Proc. IEEE 106, 2068–2083 (2018).
4. Vuduc, R. W. in Encyclopedia of Parallel Computing 

(ed. Padua, D.) 102–105 (Springer, 2011). 
5. Frigo, M. ACM SIGPLAN Not. 34, 169–180 (1999).
6. Whaley, R. C., Petitet, A. & Dongarra, J. J. Parallel Comput. 

27, 3–35 (2001).
7. Püschel, M. et al. Proc. IEEE 93, 232–275 (2005).
8. Franchetti, F. & Püschel, M. Proc. Int. Parallel Distributed 

Process. Symp. (IEEE, 2003). 
9. Alur, R. et al. in Formal Methods in Computer-Aided 

Design 2013 1–8 (IEEE, 2013).
10. Barthe, G., Crespo, J. M., Gulwani, S., Kunz, C. 

& Marron, M. ACM SIGPLAN Not. 48, 123–134 (2013).
11. Schkufza, E., Sharma, R. & Aiken, A. in Proc. 18th Int. Conf. 

Archit. Support for Program. Lang. Oper. Syst. 305–316 
(IEEE, 2013).

12. Devlin, J. et al. in Proc. 34th Int. Conf. Mach. Learn. Vol. 70 
(eds Precup, D. & Teh, Y. W.) 990–998 (JMLR, 2017).

13. Li, Y. et al. Science 378, 1092–1097 (2022).
14. Ellis, K. et al. in Proc. 33rd Neural Inf. Process. Syst. 

(eds Wallach, H., Larochelle, H., Beygelzimer, A., 
d’Alché-Buc, F. & Fox, E. B.) 9169–9178 (Curran Associates, 
2019).

The author declares competing interests. See go.nature.
com/3qmfpha for details.

4 numbers? Sort
4 numbers

No

Yes

a b

L > 2

L = 2L < 2

Sort
3 numbers Sort first

3 numbers

Sort 4 numbers,
3 of which are sorted

Sort
2 numbers

Yes

Sort
2 numbers

Yes

3 numbers?

No

2 numbers?

No

Yes
3 numbers?

No

Input sequence = (8, 6, 7, 2)

(2, 6, 7, 8)

(2, 6, 7, 8)

Input sequence = (8, 6, 7, 2)

Compare
sequence length

(L) to 2

Figure 1 | An AI-generated approach to sorting. Mankowitz et al.1 used deep reinforcement learning 
to improve the efficiency with which the C++ programming language sorts items in a list. The authors’ 
algorithm used a reward-based system, without the need for any problem-specific training. In one set of 
experiments, the algorithm focuses on producing routines that sort short sequences of numbers, which 
are then used as building blocks to sort longer sequences. a, This is one approach to sorting a sequence 
containing up to four numbers, involving three separate routines for sorting two, three or four numbers. Red 
highlights the path taken to sort the example sequence (8, 6, 7, 2).  b, Mankowitz and colleagues’ algorithm 
generated a different procedure — incrementally sorting sequences of length four by first sorting the first 
three elements. This method for sorting is now part of the standard C++ library used worldwide. (Adapted 
from Fig. 4 of ref. 1.)

Nature | Vol 618 | 8 June 2023 | 241

©
 
2023

 
Springer

 
Nature

 
Limited.

 
All

 
rights

 
reserved. ©

 
2023

 
Springer

 
Nature

 
Limited.

 
All

 
rights

 
reserved.




