
the detection of illegal fishing operations 
and measurement of the informal economy2 
(economic activities that are neither taxed 
nor monitored by governments). Indeed, the 
findings reveal a high concentration of illicit 
fishing to the west of the Korean Peninsula and 
on the North African coast. Vessel tracking 
could also transform environmental conser-
vation efforts by revealing encroachment on 
protected areas — Paolo et al. report that two 
such areas, the Galapagos Marine Reserve and 
the Great Barrier Reef Marine Park, were vis-
ited by an average of more than 5 and more 
than 20 fishing vessels per week, respectively.

Second, a lot of global satellite imagery 
is freely available to the public, and 
machine-learning tools for processing these 
data are continuously being developed, 
often as open-source software (Paolo and 
colleagues’ data set and software are also 
freely available). Such efforts democratize 
access to data and tools and allow research-
ers, analysts and policymakers in low-income 
countries to leverage tracking technologies 
at low cost, for example to monitor exclusive 
economic zones — areas of the ocean for which 
sovereign states have exclusive exploration 
and usage rights.

The study also highlights some general 
limitations of Earth observation by satellites. 
The spatial resolution of publicly available 
satellite imagery (such as the Sentinel-1 data 
used by Paolo et al., which have a ground res-
olution of about 20 metres per pixel) prevents 
the detection of objects such as small fishing 
vessels. Crucially, this leaves many small-scale 
fishers in coastal communities off the map. 
And although satellites cover every corner of 
the planet, some areas are more difficult to 
map than others — for example, because of 
persistent cloud coverage.

Emerging data sources and increasingly 
powerful machine-learning systems will over-
come some of these limitations, and thereby 
enable the quantification of previously 
unmeasured aspects of human development 
and change. High-resolution radar instru-
ments can see through clouds, for instance; 
and advances in ‘unsupervised’ deep learning 
will make it possible to gain insight from satel-
lite images with less laborious hand-labelling 
by humans than is currently needed3.

The complexity and sheer volume of 
Earth-observation data remain challenges that 
are driving research among machine-learning 
and Earth scientists4. But this should not be 
the only research focus. Earth-observation 
technologies should also be designed to 
help capture human activity in a way that 
is equitable and community-centred. For 
example, unlike Western large-scale farm-
ing operations, many sustenance farmers in 
low-income countries operate on small plots 
of land. Earth-observation models can fail to 
delineate those fields if the imagery available 

is not of sufficiently high resolution or because 
models trained on Western data have not been 
exposed to such small-scale patterns.

Moreover, cross-disciplinary expertise and 
the involvement of multiple stakeholders are 
often essential to interpret satellite-based 
observations in specific regions and put 
them into context. As an illustration of this, 
Indigenous peoples often have a fundamen-
tally different, and frequently more complete, 
understanding of their local ecosystems than 
can be captured on a satellite image. Failure 
to incorporate those insights might lead to 
the development of methods that fail to meet 
real-world needs, ignore important equity and 
transparency considerations, and ultimately 
limit the utility of satellite-based obser-
vations5. The development of approaches 
that prioritize computational accessibil-
ity — publicly available data, open-source 
software, and efficient algorithms that don’t 
require high-performance computers — will 
also be crucial6.

Paolo and colleagues’ study adds to a 
growing body of work highlighting how deep 
learning can facilitate ocean monitoring, with 
applications ranging from the detection of 
marine debris7 to tracking algal blooms8. The 
task now is for interdisciplinary collaborations 
to build on these prototype technologies to set 

up large-scale observation systems that focus 
on stakeholder engagement and local commu-
nity efforts. This will ensure that advances in 
deep learning for Earth observation achieve 
their potential to address pressing local and 
global challenges.

Konstantin Klemmer is at Microsoft Research 
New England in Cambridge, Massachusetts 
02142, USA. Esther Rolf is at the Harvard Data 
Science Initiative and the Center for Research 
on Computation and Society, Harvard 
University, Boston, Massachusetts 02134, USA.
e-mails: kklemmer@microsoft.com; 
erolf@g.harvard.edu

1.	 Paolo, F. et al. Nature 625, 85–91 (2024).
2.	 Angrist, N., Goldberg, P. K. & Jolliffe, D. J. Econ. Persp. 35, 

215–242 (2021).
3.	 Wang, Y., Albrecht, C. M., Braham, N. A. A., Mou, L. 

& Zhou, X. X. IEEE Geosci. Remote Sensing Mag. 10, 
213–247 (2022).

4.	 Reichstein, M. et al. Nature 566, 195–204 (2019).
5.	 De-Arteaga, M., Herlands, W., Neill, D. B. & Dubrawski, A. 

ACM Trans. Mgmt Inf. Syst. 9, 9 (2018).
6.	 Rolf, E. et al. Nature Commun. 12, 4392 (2021).
7.	 Rußwurm, M., Venkatesa, S. J. & Tuia, D. iScience 26, 

108402 (2023).
8.	 Wang, M. & Hu, C. Remote Sens. Environ. 264, 112631 

(2021).

The authors declare no competing interests.

Scientists have long suspected that many 
disease-causing genetic mutations reside in 
the 98% of the genome that does not encode 
proteins, especially in regions that have roles 
in regulating gene expression. However, it has 
been challenging to differentiate systemati-
cally between harmful and neutral mutations, 
partly because researchers lack a clear picture 
of which stretches of the non-coding genome 
are essential for human health. On page 92, 
Chen et al.1 address this challenge, introduc-
ing a tool that can analyse large collections 
of human genomes to identify non-coding 
regions that have the greatest potential to 
cause disease when mutated.

This work represents the most recent 
iteration of the Genome Aggregation Database 

(gnomAD), a publicly available catalogue of 
human genetic variation. The first version2, 
released in 2020, included sequence data from 
the protein-coding DNA of 125,748 people and 
the whole genomes of 15,708 people. Since 
then, the consortium has greatly expanded 
the database; the resource now includes 
whole-genome sequences from 76,156 indi-
viduals of diverse ancestries, providing a much 
deeper picture of human genetic variation.

GnomAD has transformed human genet-
ics, especially in terms of diagnosing rare 
diseases. The genome of any individual differs 
from those of other people at millions of sites. 
Most of these genetic variants are clinically 
insignificant, particularly those that are com-
mon in the general population. When clinical 

Human genetics

Linking the non-coding 
genome to human health
Ryan S. Dhindsa & Slavé Petrovski

An expanded version of a human-genome database called 
gnomAD, containing 76,156 whole-genome sequences, has 
enabled investigation of how variants in non-protein-coding 
regions of the genome affect health. See p.92
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geneticists analyse the DNA of a person who 
is suspected of having a rare genetic disease, 
they must sift through all of the variants, elim-
inating common ones to find those most likely 
to cause disease. GnomAD made it possible for 
a clinician to easily look up a person’s variants 
and rule out those that are common either 
worldwide or in a certain genetic ancestry. The 
larger and more ancestrally diverse number 
of whole genomes in this newest version of 
gnomAD will allow scientists to more easily 
identify which variants are rare — and thus 
more likely to be disease-related — in the 
non-coding genome.

Large data sets such as gnomAD have also 
enabled researchers to develop ‘intolerance 
metrics’ to examine how many protein-alter-
ing variants are observed in a gene in a large 
sample of the human population, compared 
with how many are expected to arise at random 
during evolution3–6. These measures help to 
determine which genes are intolerant of 
genetic variation. Genes with less variation 
than expected are more intolerant — and more 
likely to be disease-associated — than are genes 
that harbour as much or more variation than 
is expected by chance.

There has been a growing effort to extend 
intolerance metrics to include the non-coding 
sections of the human genome7–9. Chen et al. 
add to this list of tools with an approach 
that they call Gnocchi (Fig.  1). Whereas 
protein-coding genes have well-defined 
boundaries, non-coding regions are not as 

conveniently divided into functional units. 
To circumvent this issue, the authors divided 
the genome into 1,000-base-pair windows, and 
calculated the intolerance of each window.

Although conceptually similar to other 
non-coding intolerance scores, the major 
advance of Gnocchi is in how it calculates the 
theoretical expected number of variants in 
each window. Mutation rate varies consid-
erably across the genome, being affected 
by factors such as local-sequence context 
and the way in which the DNA is modified 

by the addition of methyl groups. Chen and 
colleagues introduce a statistical model that 
includes these different features to better 
estimate the mutation rate in each window.

The authors validated the ability of Gnocchi 
to identify relevant regions of the genome 
in several ways. First, they showed that pro-
tein-coding regions were, on average, more 
intolerant of variation than were non-coding 
regions, which was consistent with expecta-
tions. Second, they found that the most intol-
erant regions of the non-coding genome are 
enriched for gene-regulatory elements such 
as promoters and enhancers. Third, they 

demonstrated that Gnocchi can distinguish 
between putatively benign variants and 
curated lists of disease-causing mutations in 
the non-coding genome. Fourth, they showed 
that individuals diagnosed with developmen-
tal disorders are more likely than healthy 
people to have copy-number variants (large 
variants that result in duplications or deletions 
of DNA) in intolerant regions of the genome.

Chen and colleagues also demonstrated 
that Gnocchi can be used to bolster con-
ventional, gene-level intolerance scores. 
They compared the intolerance of a gene’s 
non-coding enhancer to variation (meas-
ured using Gnocchi) with the intolerance of 
coding regions of the gene to variants that 
disrupt their normal function (measured 
using a separate metric, called LOEUF)2. The 
two metrics generally concurred, but there 
were instances in which a gene that seemed 
tolerant of loss of function had an intolerant 
enhancer. These occurrences arose mostly for 
small genes, for which the accuracy of gene-
level intolerance scores is currently limited 
by sample size. Combining a gene’s LOEUF 
score with the Gnocchi score of its enhancer 
improved overall intolerance estimates for 
small protein-coding genes.

We have previously shown similar perfor-
mance gains when combining gene-level 
intolerance scores with scores that meas-
ure the intolerance of a gene’s untranslated 
regions10 (regions that are transcribed into 
messenger RNA but not translated into pro-
teins). Such approaches could be further 
refined in future work by combining intoler-
ance metrics for each gene and all of its nearby 
and distant regulatory sequences.

It is noteworthy that Gnocchi seems to 
outperform existing metrics in its ability 
to identify non-coding, disease-associated 
variants  —  including one metric that was 
developed last year using nearly twice 
as many genome sequences, which were 
available through a publicly available repos-
itory called the UK Biobank11. The better per-
formance of Gnocchi might be explained by 
the differences in how its scores are formu-
lated and in its modelling of how mutations 
arise. However, the fact that the collection 
of genome sequences in gnomAD includes 
many more individuals of non-European 
ancestries than does the UK Biobank could 
also explain some of the performance dif-
ferences. It is commendable that nearly 
half the gnomAD genome samples are from 
individuals of non-European ancestries, but 
researchers must continue to strive for larger, 
more-diverse human reference sets, both to 
increase the accuracy of intolerance metrics 
and to improve health equity.

The gnomAD consortium set a gold standard 
for data aggregation and sharing with its first 
iteration, and continues to be exemplary in 
this regard. This resource will continue to grow 
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Figure 1 | A metric to measure variation in non-protein-coding DNA. The Genome Aggregation Database 
(gnomAD) contains 76,156 human whole-genome sequences — a sample size large enough to examine 
genetic variation in the non-protein-coding portions of the genome. Chen et al.1 developed a metric called 
Gnocchi to measure this variation. They divided the genome into tiled 1,000-base-pair-long (1 kb) windows. 
They calculated the expected number of variants in each window using an algorithm that took into account 
several genomic features, such as local DNA sequences (denoted by bases dubbed A, T, G and C) and the way 
in which the DNA is modified by methyl groups. They then compared this expected number with the actual 
number of variants present in each sequence in the gnomAD cohort to calculate the Gnocchi score. Regions 
that had many fewer mutations than expected received a larger Gnocchi score. This indicated that they are 
more intolerant of mutations, and so more likely to be relevant to disease.

“The gnomAD  
resource now includes 
whole-genome sequences 
from 76,156 individuals.”
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under the strong leadership of the gnomAD 
consortium, which has made it clear that the 
priority is to continually expand the data-
base to be more representative of the global 
population. In doing so, it will equip scientists 
with ever-more tools with which to reveal the 
hidden secrets of our genome.
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Electronics relies on the use of switching 
devices made from semiconducting materials, 
in which an electric current can be controlled, 
ideally down to the movement of single 
charges. Semiconductors achieve this because 
the allowed energies of their electrons leave a 
gap between a low-energy and a high-energy 
band, and electrons can be excited to cross 
this ‘bandgap’. Materials with different-sized 
bandgaps can have complementary functions, 
such as performing logic operations, supply-
ing power or acting as a sensor. But integrating 
these materials into a single device is challeng-
ing. On page 60, Zhao et al.1 report a way of 
growing a graphene-like layer with a narrow 
bandgap on a material with a wide bandgap.

Graphene is a material that is gapless 
because its electronic bands touch at one 
point, called the Dirac point, and then diverge. 
This peculiar behaviour makes it ideal for 
applications in photonics and optoelectron-
ics2,3. Although its gapless nature means that 
it is not the material of choice for electronic 
devices, it can be used in components that 
operate in the terahertz portion of the elec-
tromagnetic spectrum (1 THz is 1012 Hz), where 
it fills a role that very few other materials can4.

There has nevertheless been a constant 
effort over the past 20 years to ‘open a band-
gap’ in graphene, to convert this versatile 

material into a semiconductor. One way of 
doing so involves cutting or shaping graphene 
into nanoribbons5,6, which can now be achieved 
with atomic precision7. In this case, the band-
gap opens because the electrons are further 
confined to a single dimension. However, 
nanoribbons are subject to sample-to-sample 
variations, and it is currently difficult to 

Condensed-matter physics

Tailoring graphene for 
electronics beyond silicon
Francesca Iacopi & Andrea C. Ferrari

The integration of non-silicon semiconductors into 
systems on chips is needed for advanced power and sensing 
technologies. A semiconducting graphene ‘buffer’ layer grown 
on silicon carbide is a step on this path. See p.60 

produce them at the scale required for con-
sumer electronics. Another way to create a 
bandgap involves leveraging how graphene 
interacts with the substrate on which it is 
grown8. This is the route that Zhao et al. took.

Graphene is a single layer of carbon atoms 
arranged in a honeycomb lattice. It can be 
grown by heating the semiconducting mater
ial silicon carbide (SiC) until the silicon atoms 
on its surface sublimate, leaving a carbon-rich 
layer that can recrystallize9. The resulting layer 
has a hexagonal structure, similar to that of 
SiC, with some carbon atoms covalently 
bonded to the substrate. Subsequent layers 
form as normal graphene, but the partial 
bonding makes this first ‘buffer’ layer a semi
conductor10. A bandgap opens not through 
dimensional confinement, as for nanoribbons, 
but as a result of the bonding constraints that 
SiC imposes11.

Graphite (of which graphene is a single layer) 
has been produced from SiC since at least 1896 
(ref. 12), and the growth mechanism has been 
investigated since the 1960s (ref. 13). Over the 
past 20 years, this approach has been refined 
and used systematically to obtain graphene at 
the scale of a wafer (that is, the typical size used 
for mass production of electronic devices)9.

It was known as early as 2008 that the 
graphene buffer layer that forms on SiC could 
be a semiconductor14, but achieving wafer-
scale samples has been a challenge. Zhao et al. 
succeeded in creating a controlled environ-
ment by sandwiching two SiC chips so that the 
silicon surface of the top chip was opposite 
the carbon surface of the bottom one. When 
the system was heated at ambient pressure, 
carbon atoms were transported from the car-
bon surface to the silicon surface to form the 
buffer layer. This differs from other routes, 
in which atoms are depleted from the silicon 
surface and lost to the system’s surroundings14.

The authors’ technique allowed them to 

Figure 1 | Combining ‘beyond-silicon’ materials to make an integrated system on a chip.  Graphene 
(a single layer of carbon atoms arranged in a honeycomb pattern) can be grown on silicon carbide (SiC), 
which has a wide ‘bandgap’ between the allowed energies of its electrons. a, Graphene is ‘gapless’, but Zhao 
et al.1 devised a way of tailoring a graphene ‘buffer’ layer on SiC, such that the layer has a bandgap (albeit 
a narrow one) and is therefore semiconducting. b, This approach could be used to integrate materials 
with wide and narrow bandgaps into the same chip, where they could serve as sensing, logic and power 
components, to create integrated systems on chips. The conducting graphene layers (not shown in a) that 
grow on top of the buffer layer could be used as connections between chip components.
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