
that researchers use to transfer DNA into 
cells. The authors created a set of plasmids 
that use the modified codon language of 
the engineered cells to encode components 
required for plasmid replication in bacteria. 
These plasmids can function only in cells with 
a synthetic genome and engineered tRNAs, 
a scenario that strikingly reduces the risk of 
engineered DNA being unintentionally trans-
ferred to wild bacterial populations (Fig. 1c).     

It currently takes a huge effort to estab-
lish a working synthetic genome, with only 
a handful completed so far. Our capabili-
ties on this front are slowly scaling up, with 
a full synthetic genome for a eukaryotic cell 
(one that contains a nucleus) expected to 
be finalized in the next few years6, and work 
towards a human synthetic genome project 
also under way7. As the number, size and ambi-
tion of synthetic-genome projects increases, 
so, too, will our ability to study and manipu-
late biology. The impressive feats achieved 
through codon repurposing in this work will 
be immensely valuable to bacterial biotech-
nology, in which viral contamination is a 
persistent and expensive problem. 

The biggest impact of this work will prob-
ably be in providing a foundation for similar 

strategies in synthetic genomes for other 
organisms. Increasingly, key medical prod-
ucts, such as vaccines and protein therapeu-
tics, depend on the use of mammalian or 
human cell-culture systems that are vulnerable 
to viral infection, with substantial implications 
for cost and product safety8. Controlled, reli-
able manufacturing processes that are pro-
tected from problems of viral infection will 
be crucial for maximizing  these industries’ 
positive impact on health and well-being, while 
ensuring that the processes are safe, contained 
and retain public confidence.
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Every year, collisions involving road vehi-
cles kill or seriously injure tens of thousands 
of people in the United Kingdom alone (see 
go.nature.com/3ekkex4). Autonomous 
vehicles could reduce these numbers, but 
their safety is yet to be guaranteed (see 
go.nature.com/3ykw43v). Identifying poten-
tially hazardous situations and testing how an 
autonomous agent will react are crucial parts 
of the safety-assurance process. But people 
are not necessarily adept at recognizing situa-
tions that would be hazardous for non-human 
drivers because they do not register small 
changes in visual information that might con-
fuse a machine. On page 620, Feng et al.1 intro-
duce a method that uses artificial intelligence 
(AI) to validate the AI of autonomous vehicles.

The challenge of thinking like a machine 
is not the only reason it is difficult to test 

situations that pose a hazard for autonomous 
vehicles. The first barrier is the sheer volume 
of data to assess. Human drivers in the United 
States are estimated to crash once every 
850,000 kilometres. Autonomous vehicles 
currently fare even worse than this: a human 
operator has to take control of a self-driving 
vehicle around once every 80,000 kilometres 
to avoid a crash. However, this still amounts 
to a lot of safe driving between collisions, 
which means that searching for test cases is 
like looking for a needle in a haystack. Simply 
gathering more data is, therefore, unlikely to 
improve road safety.

The hazard itself also complicates the task 
of testing for safety. Trialling autonomous 
vehicles by placing real people in danger is out 
of the question, so instead researchers must 
examine data from a limited set of real-world 
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Hazards help autonomous 
cars to drive safely
Colin Paterson & Chiara Picardi

Collecting training data by focusing on dangerous scenarios 
offers an efficient way for artificial intelligence to improve the 
safety of autonomous vehicles. Augmented reality allows the 
approach to be tested without risking lives. See p.620

Remembering a key advance in our 
understanding of the cell cycle, and a tale 
of perilous Antarctic exploration.

50 years ago
Stephen R. Pelc, who died suddenly ... at 
the age of 65, was internationally famous 
for his pioneer work on the techniques of 
autoradiography and for his use of these 
techniques in cellular biological research. 
...[A]t the Hammersmith Hospital, London, 
... he began his studies on the action of 
ionizing radiations on photographic film 
which led to his development of stripping-
film autoradiography ... He is most famous 
for work begun in the early nineteen-fifties 
with Dr Alma Howard. By incorporating 

32P into dividing cells and removing all 
but the DNA by acid hydrolysis he was 
able to time the incorporation of 32P 
into nuclear DNA. He showed that DNA 
synthesis did not occur after prophase, 
as had been believed previously from 
staining evidence, nor did it occur 
continuously throughout interphase. He 
and Howard showed that, for each type 
of nucleus, there was a particular period 
of interphase, which he called the “S” 
(synthesis) stage, during which the DNA 
content doubled; this DNA was stable 
and became divided equally into the two 
daughter nuclei. Before and after the “S” 
there was a gap in his knowledge of what 
metabolic processes occurred in the nuclei 
and, understandably, he named these “G1” 
and “G2”.
From Nature 23 March 1973

100 years ago
The Worst Journey in the World: Antarctic, 
I9IO–I9I3. By Apsley Cherry-Garrard — This 
is the sixth book to give the story, or part of 
the story, of Capt. Scott’s last expedition, 
and it is in some ways the most remarkable 
of them all. Mr. Cherry-Garrard took part 
in three of the worst journeys ever made 
in the Antarctic or anywhere else, and 
the iron of his sufferings has entered into 
his soul and imparted a ferric quality to 
his recollections ... If poetry be indeed 
definable as “emotion recollected in 
tranquillity,” Mr. Cherry-Garrard has given 
us a true epic of exploration.
From Nature 24 March 1923

From the archive
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examples, and imagine and simulate unsafe 
behaviours that might never be encountered. 

Such simulations will always be based on 
incomplete models because complexity is 
computationally costly. And in simplifying 
the model of the world to reduce complexity, 
researchers run the risk of removing the key 
factors that cause collisions. Indeed, some 
safety concerns might arise only when these 
factors are combined, so understanding which 
factors to remove is not easy.

Feng et al. approached this problem by first 
assuming that an AI testing agent (under the 
guidance of safety engineers) is better placed 
than a person to find situations in which an 
autonomous system will fail. Like its human 
counterpart, the AI tester is interested in find-
ing cases that cause failures and therefore 
tries to create an environment in which such 
cases arise. The authors used reinforcement 
learning to train an AI testing agent to come 
up with a plan for controlling the behaviours 
of ‘background’ vehicles that can manoeuvre 
between lanes in a simulation. They then 
selected all the cases in which the choices 
made by these background vehicles led to a 
dangerous situation (Fig. 1).

Feng and colleagues’ AI agent learnt to 
ignore the vast set of situations in which 
vehicle behaviours are benign, and instead 
built a dense set of test data for safety-critical 
events. In this way, unimportant scenarios 
were removed from the data set, decreasing 
computational complexity and increasing the 
efficiency and effectiveness of testing. 

In reality, of course, a simulation does not 
capture the true complexity of the real world. 
Small changes in environmental conditions, 

such as dirt on a camera lens or a sudden 
change in lighting conditions, can cause 
safety failures. To tackle this problem, Feng 
et al. demonstrated a way of testing a real car, 
driving autonomously on a test track, using 
a form of augmented reality. As it circles 
the track, the car must contend with virtual 
drivers that have been specifically trained by 
the AI to display adversarial behaviours. These 
encounters test the response of the autono-
mous system to dangerous situations, in an 
environment that closely resembles the real 
world — without putting any lives at risk.

Feng and colleagues’ work is a key step 

towards assuring the safety of autonomous 
vehicles, but several challenges remain. The 
authors’ approach relies on motorized vehi-
cles being the only adversarial agents in the 
test space. This makes defining dangerous 
encounters that arise from interactions with 
other motorists easy to define and therefore 
straightforward to test. However, an auton-
omous vehicle driving in the real world also 
needs to be aware of cyclists and pedestrians. 
And there are external factors — including sys-
tem failures and environmental conditions 
— that could lead to safety violations beyond 
the AI’s control, especially when they occur 

simultaneously. These factors currently 
preclude autonomous vehicles from being 
considered safe under all possible conditions.

The authors’ approach provides valuable 
insights into possible hazardous situations 
faced by an autonomous vehicle, and the safety 
violations that might result from these events. 
But it is not yet clear how this information 
could be used to improve controllers, vehi-
cles and overall safety. We must accept that 
even a rigorously tested autonomous system 
will occasionally have to make difficult deci-
sions, for which even human drivers do not 
have good answers (see Nature 562, 469–470; 
2018). Defining acceptable behaviours under 
such conditions remains challenging. Mak-
ing sure that all stakeholders understand the 
perception and decision-making abilities of 
machines will be key to persuading the public 
that autonomous systems are safe2.

Despite these challenges, Feng and col-
leagues’ method improves the viability of 
testing autonomous systems in complex 
environments. It does not replace the need 
for human oversight in constructing reasoned 
arguments for safety, but — as a tool in the belt 
of the safety engineer — it could well support 
the validity of those arguments.
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Figure 1 | An augmented reality test track for autonomous vehicles. 
Feng et al.1 developed an artificial-intelligence agent for testing the safety 
of autonomous vehicles. The agent controls ‘background’ vehicles in a 
simulation to find potentially unsafe situations, thereby building a dense set of 
dangerous events on which to train an autonomous test vehicle. The authors 
then use augmented reality to implement this training approach on a real 

track. a, A background vehicle changes lanes behind the test car while another 
vehicle prevents the test car from changing lanes, causing it to collide with 
a third vehicle in front. b, The test car changes lanes to avoid a background 
vehicle cutting in front of it, but collides with a second vehicle. c, The test car 
decelerates to avoid a background vehicle changing lanes ahead, and a second 
vehicle collides with it from behind. (Adapted from Fig. 2 of ref. 1.)
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“A human operator  
has to take control of a  
self-driving vehicle around 
once every 80,000 kilometres 
to avoid a crash.”
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