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half the mass of Earth. In addition to matching 
the core’s density and the mantle’s oxidation 
state, their calculations produced one to three 
‘oceans’ of water, where one ocean is the total 
amount of water on Earth’s surface12. Although 
the authors modelled this proto-Earth only, 
its water (and other chemical signatures) 
would have been inherited by Earth during 
the collisions that led to its growth. 

The theory that Earth’s water came from 
asteroid impacts is supported by the fact that 
hydrogen isotopes in Earth’s water are a near-
match for those of meteorites called carbona-
ceous chondrites, which come from the outer 
asteroid belt12. However, a study published in 
2020 revealed that the meteorites most closely 
resembling Earth’s precursor planetesimals, 
known as enstatite chondrites, also match 
Earth’s hydrogen isotopes — and contain more 
water than previously thought13. 

When elements such as zinc and nitro-
gen are included, the isotopic content of 
Earth’s volatile components (including 
water) is consistent with a simple mixture in 
which around 70% of volatiles are made of 
enstatite-chondrite-like material and 30% are 
carbonaceous-chondrite-like material14. But 
carbonaceous chondrites have a higher volatile 
content than do enstatites13, so this mixture 
would result in carbonaceous chondrites mak-
ing up only roughly 5% of Earth’s mass.

Young and colleagues’ model suggests 
that the isotopic signature of water could 
have evolved through various reactions, 
including through oxidation of the hydro-
gen atmosphere15. In their scenario, atmos-
phere-sourced water would make up the 70% 
assumed to derive from enstatite chondrites, 
which would require the water to have the 
same isotopic content as these chondrites. 
This might seem like too much of a cosmic 
coincidence, but the authors show that this 
scenario is nonetheless plausible.

Young and colleagues’ study highlights the 
potential importance of interactions between 
the atmosphere and a magma ocean on a 
planetary scale. The sequence of events put 
forward by the authors is so intuitive that one 
might wonder whether it is, in fact, generic. 
And if the authors’ model can also be applied 
to the known exoplanets, there is hope that it 
could be tested. 

Of course, it’s worth keeping in mind that 
other solutions already exist for each of the 
problems that the authors attempt to solve. 
Enstatite chondrite meteorites on their own 
have enough water to explain Earth’s oceans 
despite originating in parent bodies much too 
small to have hydrogen-rich atmospheres over 
magma oceans12. Nonetheless, one strength 
of Young and colleagues’ model is that it links 
together all three issues. 

Yet the comprehensive nature of the authors’ 
model might prove to be a weakness. For 
instance, evidence that hydrogen is not the 

light element responsible for the density deficit 
would compromise the model, as would a revi-
sion to the critical protoplanet mass required 
for a long-lived magma ocean. Despite these 
uncertainties, the authors have demonstrated 
that early interactions between magma oceans 
and atmospheres represent a key ingredient in 
future models of how Earth was shaped. 
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Anyone who has walked along a sandy beach 
knows how hard it is to move on sand. Like 
other granular materials, including mud and 
snow1, sand yields and flows under the feet 
until they sink deep enough, and then it stops 
flowing and provides a stable foothold. In addi-
tion, sand doesn’t spring back after impact, 
and the weight it can support before giving 
way depends on how wet and tightly packed 
it is, thus changing how much our foot sinks 
in and slips as we walk1. These complexities 
complicate the task of controlling a robot so 
that it can run on sand. However, writing in 
Science Robotics, Choi et al.2 have succeeded 
in doing so, enabling a four-legged robot to be 
fast, robust and energetically efficient on sand.

Legged robots have, for several decades, 
been able to run on solid ground3–5, and some 
robots that are small enough to fit in the palm 
of the hand have even done so on uniform sand 
in the laboratory6. Larger legged robots can 
walk slowly on natural granular materials7,8, 
but researchers have struggled to control 
legged robots such that they match an animal’s 
running pace on sand. Choi et al. managed 
this feat — achieving a top running speed of 
3.03 metres per second — by integrating three 
approaches.

First, they used reinforcement learning8 
to train their robot to maximize its running 
speed and minimize how often it fails and the 
energy it expends. To do so, they first applied 
a technique called privileged learning, which 
is akin to training a teacher so that they can 
teach a student efficiently9. A simulated robot 
— the teacher — first trains itself to identify 
optimal control strategies by learning from a 
very large data set, which takes a long time. The 
student — the real robot — then benefits from 
what the teacher has already learnt, and can 
use partial, noisy data to quickly shift between 
control strategies. In the authors’ case, the 
teacher learnt how to run under different 
sandy conditions in simulations, so that the 
student could adapt as it ran across real sand.

Second, to bridge the gap between simu-
lation and reality, Choi et al. trained their robot 
teacher by simulating sand with highly variable 
physical properties and load-bearing abilities, 
similar to those found in nature (dry to wet, 
loosely to tightly packed). This is important 
because machine-vision systems, which are 
designed to see and interpret the world as eyes 
do, cannot reliably estimate the physical prop-
erties of a challenging terrain. For example, 
machine-vision systems might erroneously 
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A four-legged robot has learnt to run on sand at a faster pace 
than humans jog on solid ground. With low energy use and 
few failures, this rapid robot shows the value of combining 
data-driven learning with accurate, yet simple, models. 
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a b

Figure 1 | A robot learns to run on sand. Choi et al.2 used reinforcement 
learning to train a legged robot to run on level beach sand at a top 
speed of 3.03 metres per second. The robot’s rapid, robust and 
efficient running was achieved by training it to adapt to variable terrain 

conditions, including dry and loosely packed sand (a) and wet and tightly 
packed sand (b). The training integrated data-driven learning and simulation 
with accurate, yet simple, models derived from rigorous experimental research. 
(Adapted from Fig. 1 of ref. 2.)

classify the top layer of wet sand as dry. 
Because dry sand flows more easily than wet 
sand, this error in judgement will affect the 
robot’s performance. By exposing the robot 
to the variable physical properties of sand, 
Choi et al. improved the robot’s ability to adapt 
to different sand conditions (Fig. 1).

Finally, to train their simulated robot, the 
authors selected and refined a model that 
describes the reaction forces exerted by sand 
on their robot’s small feet as they strike it10. 
This model was not only accurate enough 
to capture the interaction physics, but also 
simple enough to make their simulations fast, 
both of which were necessary for the authors’ 
success.

Aside from achieving their robot’s remark-
able performance and robustness, Choi and 
colleagues’ work is notable for how well it 
integrates machine learning with models11. 
As more and more engineers aspire to ever-
greater robot mobility in the real world using 
machine learning and simulations, these 
authors still appreciate the value of models 
developed through rigorous experimental 
research. They clearly went to great lengths 
to review the growing literature on the forces 
exerted by objects moving in sand; much of this 
research comes from laboratory experiments 
involving animal and robot locomotion12.

This knowledge enabled Choi et al. to under-
stand the nuanced contributions to forces on a 
small foot as it rapidly strikes sand10. One such 
contribution comes from the friction and pres-
sure exerted by the weight of the sand parti-
cles. Another is a dynamic contribution due 
to particle inertia, which is similar to the aero-
dynamic or hydrodynamic drag felt in fluids. 
A third factor — transient, yet large — also 
comes from particle inertia, resulting from 
the sudden acceleration of the sand grains 
when they are first hit by the foot. The authors 
demonstrated that their refined model (which 
includes all these contributions) allowed the 
robot to achieve much higher performance 

and robustness than is possible with less 
accurate (and still often used) models.

Further research will be needed to improve 
legged robots so that they have animal-like 
mobility on terrain that is even more 
challenging than beach sand. As Choi and 
colleagues’ robot moved on beach sand, only 
its feet sank — a scenario that is well described 
by the simple model that the authors used. 
However, achieving such mobility would be 
much more difficult if the robot’s legs were to 
sink deeper into the sand13,14 — for example, if it 
were much heavier itself8 or if it were carrying 
a person or a large package. The robot would 
also face difficulties if it kept stepping into 
sand that was already disturbed13, because the 
load-bearing abilities of the sand would con-
tinuously change. It would similarly struggle 
to move on steep dunes, which avalanche when 
disturbed15. Enabling robots to learn to deal 
with these extreme situations requires training 
them using models that capture the complex 
behaviours of sand, such as that described in 
refs 1 and 16, or models yet to be developed.

Choi and colleagues’ demonstration is espe-
cially valuable and timely, given how pervasive 
data-driven learning approaches are becom-
ing. These techniques have been successful at 
solving problems such as image classification, 
medical diagnosis, natural-language genera-
tion and game playing. But the authors’ work 
is a reminder that good models are just as 
essential as data-driven learning for tackling 
problems such as robot locomotion in com-
plex terrains. In many-particle systems such as 
sand, phenomena emerge that cannot easily 
be reconstructed from the fundamental laws 
of nature17. This calls for basic experimental 
research into the underlying principles and 
mechanisms, which machine learning might 
miss11, and which simulations that are not 
vigorously validated by experiments might 
not fully capture12.

Aerial and underwater vehicles that are 
autonomous, safe, fast and efficient have been 

engineered successfully because we have a 
fundamental understanding of aerodynamics 
and hydrodynamics. Choi et al. have set an 
excellent example by showing how the same 
level of success can be achieved for animal-like 
robots traversing natural terrains, building 
on the foundation of the emerging field of 
terradynamics1. By integrating fundamen-
tal research with data-driven learning and 
simulation approaches11 in this way, we foresee 
exciting and rapid progress towards the goal 
of developing robots that can move across all 
terrains.
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