Supplementary Box 1 | Methods and data

1. Methods

1a. Sample definition and data collection

Event data collection

The website Friends of Cancer Research (http://www.focr.com/) lists all publicly available Breakthrough Therapy Designations (BTD), which were downloaded with a cut-off on 06/30/18. For partnered products, we treated each partner as if it had independently received the BTD, and thus generated an entry for each co-developing company.

For each BTD, we identified the original press release and excluded companies that did not disclose the exact BTD announcement date. Further, we excluded companies that are not publicly traded on a US stock exchange, and those that had incomplete stock price data in the event period (as of 08/24/18). We also excluded BTDs that coincided with major corporate press releases (e.g., quarterly results or clinical trial news). In cases where the same company announced several BTDs on the same date, we retained only one for analysis. This yielded 146 BTDs (102 commercial, 44 pre-commercial). Subsequently, we identified three outliers and excluded them from the final CAAR analysis (see later section).

Stock price collection

The historical closing stock prices (unadjusted) for the range of -111 days to +90 days around the disclosure of the BTD events were downloaded from https://finance.yahoo.com/. Historical stock prices from delisted companies were downloaded from https://amigobulls.com or https://barchart.com. For all respective time frames, we also downloaded stock price data for the market (S\&P500) and the industry (XBI biotechnology index) from https://finance.yahoo.com/.

1b. Two-factor market model and CAAR analysis

Market model methodology

Abnormal returns were calculated for each firm for each day in the event period, using coefficients calculated with a two-factor market model in the estimation period, Day -110 to Day - 11 in respect to the BTD event. Those results were used to determine the cumulative average abnormal returns (CAARs) for the two subsamples commercial and pre-commercial firms in the event period, Day -10 through Day 90.

The returns for each firm and trading day over the prior trading day were calculated as:

$$
\mathrm{R}_{\mathrm{i}, \mathrm{t}}=\frac{\mathrm{P}_{\mathrm{i}, \mathrm{t}}}{\mathrm{P}_{\mathrm{i}, \mathrm{t}-1}}-1
$$

where $R_{i, t}$ is the return for firm i on day t and $P_{i, t}$ is the closing stock price of firm i on day t. The same formula was used to calculate the returns of the market ($R_{m, t}$) and industry ($R_{\text {ind, }, t}$) benchmarks.

For each firm the abnormal return $A R_{i, t}$ on day t was specified using a two-factor market model ${ }^{1}$:

$$
A R_{i, t}=R_{i, t}-\left(\alpha_{i}+\beta 1_{i} R_{m, t}+\beta 2_{i} R_{i n d, t}\right)
$$

where $R_{m, t}$ and $R_{\text {ind,t }}$ are the returns of the market and industry on day t, respectively. $\alpha_{i}, \beta 1_{i}$ and $\beta 2_{i}$ are the coefficients of the multivariate regression that is used to estimate the relationship between each company, the market (S\&P 500) and the industry (XBI) during the estimation period from Day -110 to -11 prior to the BTD event.

CAAR methodology

Once the daily abnormal returns were estimated, the cumulative average abnormal for commercial and pre-commercial firms were calculated based on standard methodology. ${ }^{2}$

[^0]The average abnormal returns (AAR) were calculated as:

$$
A A R_{t}=\frac{1}{N_{t}} \sum_{i=1}^{N_{t}} A R_{i, t}
$$

Where N_{t} is the number of firms in the subsample. $A A R_{t}$ is the average abnormal return for all firms in the subsample for day t. The CAAR for each period within the event window ending on Day T was calculated as

$$
\mathrm{CAAR}_{\mathrm{T}}=\sum_{\mathrm{t}=-10}^{\mathrm{T}} A A R_{\mathrm{t}}
$$

where T was each day between Day -10 through Day 90.

1c. Outlier identification

To identify outliers, we calculated the cumulative abnormal returns (CARs) for each BTD announcement observation from Day - 10 to Day 90 of the event period. Outliers were identified as observations that were outside of the range of the mean subsample CAR $\pm 2.58 \sigma$.

For the subsample of 102 commercial firm BTD announcements, the CARs calculated from the ARs of the two-factor model resulted in a mean CAR of -1.41% and a standard deviation of 20.46%, resulting in a range of -54.21% to 51.39%. Two observations fell outside of the range for the commercial observations: a BTD for Exelixis $(8 / 24 / 15)$ had a CAR of -82.48%, and a BTD for Vertex $(1 / 6 / 13)$ had a CAR of 63.96%.

For the subsample of 44 pre-commercial firm BTD announcements, the CARs calculated from the ARs of the two-factor model resulted in a mean CAR of 0.27% and a standard deviation of 70.34%, resulting in a range of -181.21% to 181.75%. One observation fell outside of the range for the pre-commercial observations: the BTD for GlycoMimetics (5/17/17) had a CAR of 209.82\%.

1d. Test statistics

The statistical tests for determining if AARs and CAARs are statistically significant were calculated based on existing methodology used for event studies. ${ }^{3,4}$

The abnormal returns were calculated for each firm for each day in the estimation period and those results are used to determine the test statistics for the two subsamples of commercial and pre-commercial firms in the event period, Day -10 through Day 90.

[^1]The test statistic for any AAR for any day t was calculated as

$$
\mathrm{t} \text {-statistic }=\frac{A A R_{t}}{\hat{\mathrm{~S}}\left(\mathrm{AAR} R_{\mathrm{t}}\right)},
$$

where

$$
\hat{S}\left(A A R_{t}\right)=\sqrt{\left(\sum_{t=-110}^{-11}\left(\mathrm{AAR}_{t}-\overline{\mathrm{AR}_{t}}\right)\right) / 100},
$$

and

$$
\overline{\operatorname{AAR}_{\mathrm{t}}}=\frac{1}{100} \sum_{\mathrm{t}=-110}^{-11} \mathrm{AAR}_{\mathrm{t}}
$$

$A A R_{t}$ is the average abnormal return for all firms in the subsample for day t. The time period for the estimation period was Day - 110 through Day -11, resulting in 100 days in the estimation period.

The test statistic for any CAAR for any period within the event window ending on Day T was calculated as

$$
\text { t-statistic }=\frac{\mathrm{CAAR}_{T}}{\hat{\mathrm{~S}}\left(\mathrm{CAAR}_{T}\right)},
$$

where

$$
\hat{S}\left(\mathrm{CAAR}_{\mathrm{T}}\right)=\sqrt{\sum_{\mathrm{t}=-10}^{T} \hat{\mathrm{~S}}^{2}\left(\mathrm{AAR}_{\mathrm{t}}\right)}
$$

Since the BTD announcement for an individual firm appears to occur without regard to announcements for other firms, statistical tests were conducted assuming cross-sectional independence.

2. Data

2a. Complete list of included BTDs

		Commercial Firms	
Sponsor	Ticker	Agent / Alternative Name (Trade Name)	Date of BTD disclosure
Abbvie	ABBV	Elotuzumab (Empliciti)	$2014-05-19$
Abbvie	ABBV	Glecaprevir + Pibrentasvir (Mavyret)	$2016-09-30$
AbbVie	ABBV	Ibrutinib (Imbruvica)	$2016-06-29$
AbbVie	ABBV	Paritaprevir / ABT-450 (Viekira Pak)	$2013-05-06$
Abbvie	ABBV	Upadacitinib / ABT-494	$2018-01-09$
AbbVie	ABBV	Venetoclax (Venclexta)	$2015-05-07$
AbbVie	ABBV	Venetoclax (Venclexta)	$2016-01-20$
AbbVie	ABBV	Venetoclax (Venclexta)	$2016-01-28$
Abbvie	ABBV	Venetoclax (Venclexta)	$2017-07-28$
Alexion	ALXN	Asfotase Alfa (Strensiq)	$2013-05-28$
Alexion	ALXN	cPMP / ALXN1011	$2013-10-24$
Allergan	AGN	Rapastinel / GLYX-13	$2016-01-29$
Amgen	AMGN	Blinatumomab (Blincyto)	$2014-07-01$
Ariad	ARIA	Brigatinib / AP26113 (Alunbrig)	$2014-10-02$
Astellas	ALPMY	Enfortumab Vedotin	$2018-03-26$
AstraZeneca	AZN	Acalabrutinib (Calquence)	$2017-08-01$
AstraZeneca	AZN	Durvalumab (Imfinzi)	$2016-02-17$
AstraZeneca	AZN	Durvalumab (Imfinzi)	$2017-07-31$
AstraZeneca	AZN	Olaparib (Lynparza)	$2016-01-28$
AstraZeneca	AZN	Osimertinib (Tagrisso)	$2017-10-09$
Biomarin	BMRN	Valoctocogene Roxaparvovec	$2017-10-26$
Bristol-Myers Squibb	BMY	Daclatasvir (Daklinza) + Asunaprevir	$2014-02-24$
Bristol-Myers Squibb	BMY	Elotuzumab (Empliciti)	$2014-05-19$
Bristol-Myers Squibb	BMY	Fostemsavir / BMS-663068	$2015-07-21$
Bristol-Myers Squibb	BMY	Nivolumab (Opdivo)	$2014-05-14$
Bristol-Myers Squibb	BMY	Nivolumab (Opdivo)	$2014-09-26$
Bristol-Myers Squibb	BMY	Nivolumab (Opdivo)	$2015-09-02$
Bristol-Myers Squibb	BMY	Nivolumab (Opdivo)	$2015-09-16$
Bristol-Myers Squibb	BMY	Nivolumab (Opdivo)	$2016-04-25$
Bristol-Myers Squibb	BMY	Nivolumab (Opdivo)	$2016-06-27$
Bristol-Myers Squibb	BMY	Nivolumab (Opdivo)	$2017-10-16$
Bristol-Myers Squibb	BMY	Nivolumab (Opdivo) + Ipilimumab (Yervoy)	$2018-03-27$
Celgene	CELG	Lisocabtagene maraleucel / JCAR017	$2016-12-20$
Daiichi Sankyo	DSNKY	DS-8201	$2017-08-30$
Daiichi Sankyo	DSNKY	Pexidartinib / PLX3397	$2015-11-02$
Dyax	DYAX	Lanadelumab / DX-2930	$2015-07-07$

Eli Lilly	LLY	Abemaciclib (Verzenio)	2015-10-08
Gilead Sciences	GILD	Idelalisib (Zydelig)	2013-11-18
GlaxoSmithKline	GSK	Dabrafenib (Tafinlar)	2014-01-13
GlaxoSmithKline	GSK	Drisapersen (Kyndrisa)	2013-06-27
GlaxoSmithKline	GSK	Eltrombopag (Promacta)	2014-02-03
GlaxoSmithKline	GSK	Meningococcal Group B Vaccine (Bexsero)	2018-01-07
GlaxoSmithKline	GSK	Ofatumumab (Arzerra)	2013-09-13
GlaxoSmithKline	GSK	Tafenoquine (Krintafel)	2013-12-20
Incyte	INCY	Ruxolitinib (Jakafi)	2016-06-23
Johnson \& Johnson	JNJ	Daratumumab (Darzalex)	2013-05-01
Johnson \& Johnson	JNJ	Daratumumab (Darzalex)	2016-07-25
Johnson \& Johnson	JNJ	Erdafitinib	2018-03-15
Johnson \& Johnson	JNJ	Esketamine (Ketanest)	2016-08-16
Johnson \& Johnson	JNJ	Ibrutinib (Imbruvica)	2013-02-12
Johnson \& Johnson	JNJ	Ibrutinib (Imbruvica)	2013-04-08
Johnson \& Johnson	JNJ	Ibrutinib (Imbruvica)	2016-06-29
Merck	MRK	Avelumab (Bavencio)	2015-11-18
Merck	MRK	Avelumab (Bavencio) + Axitinib (Inlyta)	2017-12-21
Merck	MRK	Ebola Zaire Vaccine / V920	2016-07-25
Merck	MRK	Grazoprevir + Elbasvir (Zepatier)	2013-10-22
Merck	MRK	Grazoprevir + Elbasvir (Zepatier)	2015-04-08
Merck	MRK	Lenvatinib (Lenvima) + Pembrolizumab (Keytruda)	2018-01-09
Merck	MRK	Pembrolizumab (Keytruda)	2013-04-24
Merck	MRK	Pembrolizumab (Keytruda)	2014-10-27
Merck	MRK	Pembrolizumab (Keytruda)	2015-11-02
Merck	MRK	Pembrolizumab (Keytruda)	2016-04-18
Merck	MRK	Pembrolizumab (Keytruda)	2017-02-03
Novartis	NVS	Bimagrumab / BYM338	2013-08-20
Novartis	NVS	Canakinumab (llaris)	2016-04-27
Novartis	NVS	Ceritinib (Zykadia)	2013-03-15
Novartis	NVS	Ceritinib (Zykadia)	2017-02-23
Novartis	NVS	CTLO19 (Kymriah)	2014-07-07
Novartis	NVS	CTLO19 (Kymriah)	2017-04-18
Novartis	NVS	Dabrafenib (Tafinlar) + Trametinib (Mekinist)	2017-10-23
Novartis	NVS	Eltrombopag (Promacta)	2018-01-04
Novartis	NVS	Fingolimod (Gilenya)	2017-12-18
Novartis	NVS	Meningococcal Group B Vaccine (Bexsero)	2014-04-07
Novartis	NVS	Midostaurin / PKC412 (Rydapt)	2016-02-19
Novartis	NVS	Ribociclib / LEEO11 (Kisqali)	2016-08-03
Novartis	NVS	Ribociclib / LEEO11 (Kisqali)	2018-01-03
Novartis	NVS	Serelaxin (Reasanz)	2013-06-21
Omeros	OMER	OMS721	2017-06-13
Pfizer	PFE	Avelumab (Bavencio)	2015-11-18

Pfizer	PFE	Avelumab (Bavencio) + Axitinib (Inlyta)	$2017-12-21$
Pfizer	PFE	Crizotinib (Xalkori)	$2015-04-21$
Pfizer	PFE	Inotuzumab Ozogamicin (Besponsa)	$2015-10-19$
Pfizer	PFE	Lorlatinib	$2017-04-27$
Pfizer	PFE	Palbociclib (Ibrance)	$2013-04-09$
Pfizer	PFE	PF-04965842	$2018-02-14$
Pfizer	PFE	SPK-9001	$2016-07-21$
Pfizer	PFE	Trumenba (Menactra)	$2014-03-20$
Regeneron	REGN	Aflibercept (Eylea)	$2014-09-16$
Regeneron	REGN	Cemiplimab / REGN2810	$2017-09-08$
Regeneron	REGN	Dupilumab (Dupixent)	$2014-11-20$
Regeneron	REGN	Evinacumab	$2017-04-06$
Sanofi	SNY	Cemiplimab / REGN2810	$2017-09-08$
Sanofi	SNY	Dupilumab (Dupixent)	$2014-11-20$
Sanofi	SNY	Olipudase alfa	$2015-06-04$
Seattle Genetics	SGEN	Brentuximab Vedotin (Adcetris)	$2016-11-10$
Seattle Genetics	SGEN	Brentuximab Vedotin (Adcetris)	$2017-10-02$
Seattle Genetics	SGEN	Enfortumab Vedotin	$2018-03-26$
Shire	SHPG	Maralixibat / SHP625	$2016-06-13$
Shire	SHPG	Maribavir / SHP620	$2018-01-04$
Teva	TEVA	Deutetrabenazine (Austedo)	$2015-11-09$

Pre-Commercial Firms

Sponsor	Ticker	Agent / Alternative Name (Trade Name)	Date of BTD disclosure
Abeona	ABEO	EB-101	$2017-08-29$
Acadia	ACAD	Pimavanserin (Nuplazid)	$2014-09-02$
Achaogen	AKAO	Plazomicin	$2017-05-23$
Adaptimmune	ADAP	Affinity enhanced T-cell therapy	$2016-02-09$
Alnylam	ALNY	Givosiran / ALN-AS1	$2017-05-31$
Alnylam	ALNY	Lumasiran	$2018-03-12$
Alnylam	ALNY	Patisiran (Onpattro)	$2017-11-20$
Atara Bio	ATRA	EBV-CTL	$2015-03-02$
AveXis	AVXS	Onasemnogene Abeparvovec / AVXS-101	$2016-07-20$
BlueBird	BLUE	LentiGlobin	$2015-02-02$
Cara	CARA	Difelikefalin / CR845	$2017-06-23$
Catalyst	CPRX	Amifampridine (Firdapse)	$2013-08-27$
Celladon	CLDN	Mydicar	$2014-04-10$
Celldex	CLDX	Rindopepimut	$2015-02-23$
Clovis	CLVS	Rociletinib / CO-1686 (Xegafri)	$2014-05-19$
Clovis	CLVS	Rucaparib (Rubraca)	$2015-04-06$
DBV	DBVT	Viaskin Peanut	$2015-04-09$

Fennec	FENC	Sodium thiosulfate (Pedmark)	$2018-03-27$
Global Blood	GBT	Voxelotor	$2018-01-09$
Ignyta	RXDX	Entrectinib	$2017-05-15$
Immunomedics	IMMU	Sacituzumab govitecan / IMMU-132	$2016-02-05$
Intercept	ICPT	Obeticholic acid (Ocaliva)	$2015-01-29$
Juno	JUNO	Lisocabtagene maraleucel / JCAR017	$2016-12-20$
Kite	KITE	Axicabtagene ciloleucel (Yescarta)	$2015-12-07$
Loxo	LOXO	Larotrectinib (LOXO-101)	$2016-07-13$
MEI	MEIP	Pracinostat	$2016-08-01$
Neurocrine	NBIX	Valbenazine / NBI-98854 (Valbenazine)	$2014-10-30$
Pharmacyclics	PCYC	Ibrutinib (Imbruvica)	$2013-02-12$
Pharmacyclics	PCYC	Ibrutinib (Imbruvica)	$2013-04-08$
Portola	PTLA	Andexanet alfa / PRT4445 (AndexXa)	$2013-11-25$
Progenics	PGNX	Ultratrace iobenguane I-131 (Azedra)	$2015-07-28$
Proteostasis	PTI	PTI-428	$2018-03-12$
Sage	SAGE	Allopregnanolone / SAGE-547	$2016-09-06$
Sage	SAGE	SAGE-217	$2018-02-07$
Spark	ONCE	SPK-9001	$2016-07-21$
Stemline	STML	SL-401	$2016-08-23$
Synageva	GEVA	Sebelipase Alfa (Kanuma)	$2013-05-20$
Synthetic	SYN	Ribaxamase / SYN-004	$2017-05-11$
Tonix	TNXP	TNX-102 (Tonmya)	$2016-12-19$
Trevena	TRVN	Oliceridine / TRV130	$2016-02-22$
Ultragenyx	RARE	Burosumab-twza / KRN23 (Crysvita)	$2016-06-28$
Zogenix	QURE	AMT-060	2010-06

2b. Complete list of CAARs

Two-factor model (S\&P 500 and XBI), with outliers removed; see methods for details. $p<0.05$ indicated in yellow; $p<0.01$ indicated in green.

Commercial Firms

Day	AAR	AAR St Dev	AAR P-Value	CAAR	CAAR St Dev	CAAR P-Value
$\mathbf{- 1 0}$	0.10%	0.14%	0.47	0.10%	0.14%	0.47
$\mathbf{- 9}$	0.17%	0.14%	0.24	0.27%	0.20%	0.18
$\mathbf{- 8}$	0.00%	0.14%	0.98	0.26%	0.25%	0.28
$\mathbf{- 7}$	-0.08%	0.14%	0.59	0.19%	0.28%	0.50
$\mathbf{- 6}$	0.02%	0.14%	0.91	0.21%	0.32%	0.52
$\mathbf{- 5}$	0.03%	0.14%	0.81	0.24%	0.35%	0.49
$\mathbf{- 4}$	0.10%	0.14%	0.49	0.34%	0.37%	0.37
$\mathbf{- 3}$	-0.16%	0.14%	0.27	0.18%	0.40%	0.65
$\mathbf{- 2}$	-0.12%	0.14%	0.38	0.06%	0.42%	0.89
$\mathbf{- 1}$	0.16%	0.14%	0.26	0.21%	0.45%	0.63
$\mathbf{0}$	0.13%	0.14%	0.35	0.35%	0.47%	0.46
$\mathbf{1}$	-0.06%	0.14%	0.67	0.29%	0.49%	0.56
$\mathbf{2}$	-0.19%	0.14%	0.18	0.09%	0.51%	0.85
$\mathbf{3}$	0.16%	0.14%	0.26	0.25%	0.53%	0.63
$\mathbf{4}$	0.19%	0.14%	0.17	0.45%	0.55%	0.41
$\mathbf{5}$	0.00%	0.14%	1.00	0.45%	0.57%	0.43
$\mathbf{6}$	0.05%	0.14%	0.70	0.50%	0.58%	0.39
$\mathbf{7}$	-0.08%	0.14%	0.57	0.42%	0.60%	0.48
$\mathbf{8}$	-0.14%	0.14%	0.34	0.29%	0.62%	0.64
$\mathbf{9}$	-0.08%	0.14%	0.55	0.20%	0.63%	0.75
$\mathbf{1 0}$	-0.15%	0.14%	0.28	0.05%	0.65%	0.94
$\mathbf{1 1}$	-0.18%	0.14%	0.21	-0.13%	0.66%	0.85
$\mathbf{1 2}$	0.05%	0.14%	0.74	-0.08%	0.68%	0.91
$\mathbf{1 3}$	-0.09%	0.14%	0.53	-0.17%	0.69%	0.81
$\mathbf{1 4}$	-0.09%	0.14%	0.53	-0.26%	0.71%	0.72
$\mathbf{1 5}$	0.00%	0.14%	0.97	-0.26%	0.72%	0.72
$\mathbf{1 6}$	-0.16%	0.14%	0.26	-0.42%	0.74%	0.57
$\mathbf{1 7}$	-0.02%	0.14%	0.89	-0.44%	0.75%	0.57
$\mathbf{1 8}$	0.09%	0.14%	0.51	-0.35%	0.76%	0.56
$\mathbf{1 9}$	-0.07%	0.14%	0.61	-0.42%	0.78%	0.65
$\mathbf{2 0}$	-0.05%	0.14%	0.70	-0.47%	0.79%	0.59
$\mathbf{2 1}$	-0.04%	0.14%	0.76	-0.51%	0.80%	0.55
$\mathbf{2 2}$	-0.18%	0.14%	0.21	-0.69%	0.81%	0.52
$\mathbf{2 3}$	0.15%	0.14%	0.27	-0.54%	0.83%	0.40
$\mathbf{2 4}$	0.04%	0.14%	0.78	-0.50%	0.84%	0.52
$\mathbf{2 5}$	-0.08%	0.14%	0.60	-0.57%	0.85%	0.55
$\mathbf{2 6}$	0.22%	0.14%	0.12	-0.35%	0.86%	0.50
				0.68		

27	0.26\%	0.14\%	0.06	-0.09\%	0.87\%	0.92
28	-0.02\%	0.14\%	0.91	-0.10\%	0.88\%	0.91
29	0.11\%	0.14\%	0.42	0.01\%	0.90\%	0.99
30	-0.05\%	0.14\%	0.70	-0.04\%	0.91\%	0.96
31	-0.23\%	0.14\%	0.10	-0.28\%	0.92\%	0.76
32	-0.08\%	0.14\%	0.55	-0.36\%	0.93\%	0.70
33	-0.13\%	0.14\%	0.38	-0.49\%	0.94\%	0.60
34	-0.15\%	0.14\%	0.28	-0.64\%	0.95\%	0.50
35	-0.07\%	0.14\%	0.60	-0.71\%	0.96\%	0.46
36	-0.10\%	0.14\%	0.46	-0.82\%	0.97\%	0.40
37	0.17\%	0.14\%	0.24	-0.65\%	0.98\%	0.51
38	0.11\%	0.14\%	0.44	-0.54\%	0.99\%	0.59
39	-0.08\%	0.14\%	0.59	-0.62\%	1.00\%	0.54
40	0.18\%	0.14\%	0.21	-0.44\%	1.01\%	0.67
41	0.01\%	0.14\%	0.95	-0.43\%	1.02\%	0.67
42	0.04\%	0.14\%	0.79	-0.39\%	1.03\%	0.70
43	0.22\%	0.14\%	0.12	-0.17\%	1.04\%	0.87
44	-0.02\%	0.14\%	0.88	-0.19\%	1.05\%	0.85
45	-0.12\%	0.14\%	0.39	-0.31\%	1.06\%	0.77
46	0.07\%	0.14\%	0.63	-0.25\%	1.07\%	0.82
47	-0.13\%	0.14\%	0.37	-0.37\%	1.08\%	0.73
48	-0.17\%	0.14\%	0.24	-0.54\%	1.09\%	0.62
49	-0.10\%	0.14\%	0.49	-0.64\%	1.10\%	0.56
50	-0.06\%	0.14\%	0.69	-0.70\%	1.11\%	0.53
51	0.12\%	0.14\%	0.40	-0.58\%	1.11\%	0.60
52	-0.31\%	0.14\%	0.03	-0.89\%	1.12\%	0.43
53	-0.13\%	0.14\%	0.36	-1.02\%	1.13\%	0.37
54	0.01\%	0.14\%	0.97	-1.01\%	1.14\%	0.38
55	0.11\%	0.14\%	0.45	-0.90\%	1.15\%	0.43
56	0.20\%	0.14\%	0.16	-0.71\%	1.16\%	0.54
57	0.13\%	0.14\%	0.36	-0.58\%	1.17\%	0.62
58	-0.14\%	0.14\%	0.34	-0.71\%	1.18\%	0.55
59	-0.22\%	0.14\%	0.13	-0.93\%	1.18\%	0.43
60	-0.03\%	0.14\%	0.81	-0.96\%	1.19\%	0.42
61	-0.02\%	0.14\%	0.91	-0.98\%	1.20\%	0.42
62	-0.06\%	0.14\%	0.67	-1.04\%	1.21\%	0.39
63	0.09\%	0.14\%	0.51	-0.94\%	1.22\%	0.44
64	0.10\%	0.14\%	0.46	-0.84\%	1.23\%	0.49
65	0.04\%	0.14\%	0.76	-0.79\%	1.23\%	0.52
66	0.20\%	0.14\%	0.15	-0.59\%	1.24\%	0.63
67	0.19\%	0.14\%	0.18	-0.40\%	1.25\%	0.75
68	-0.06\%	0.14\%	0.70	-0.46\%	1.26\%	0.72
69	-0.05\%	0.14\%	0.73	-0.51\%	1.27\%	0.69
70	-0.24\%	0.14\%	0.08	-0.75\%	1.27\%	0.56
71	0.20\%	0.14\%	0.16	-0.55\%	1.28\%	0.67
72	-0.20\%	0.14\%	0.16	-0.75\%	1.29\%	0.56

$\mathbf{7 3}$	-0.18%	0.14%	0.19	-0.93%	1.30%	0.47
$\mathbf{7 4}$	0.02%	0.14%	0.88	-0.91%	1.30%	0.49
$\mathbf{7 5}$	0.05%	0.14%	0.72	-0.86%	1.31%	0.51
$\mathbf{7 6}$	-0.07%	0.14%	0.64	-0.93%	1.32%	0.48
$\mathbf{7 7}$	0.02%	0.14%	0.89	-0.91%	1.33%	0.49
$\mathbf{7 8}$	0.02%	0.14%	0.90	-0.89%	1.34%	0.50
$\mathbf{7 9}$	-0.23%	0.14%	0.11	-1.12%	1.34%	0.40
$\mathbf{8 0}$	-0.12%	0.14%	0.38	-1.24%	1.35%	0.36
$\mathbf{8 1}$	-0.20%	0.14%	0.17	-1.44%	1.36%	0.29
$\mathbf{8 2}$	0.20%	0.14%	0.16	-1.24%	1.36%	0.36
$\mathbf{8 3}$	0.30%	0.14%	0.03	-0.94%	1.37%	0.49
$\mathbf{8 4}$	0.00%	0.14%	1.00	-0.94%	1.38%	0.50
$\mathbf{8 5}$	-0.04%	0.14%	0.80	-0.98%	1.39%	0.48
$\mathbf{8 6}$	0.22%	0.14%	0.12	-0.76%	1.39%	0.59
$\mathbf{8 7}$	-0.23%	0.14%	0.11	-0.98%	1.40%	0.48
$\mathbf{8 8}$	-0.22%	0.14%	0.12	-1.20%	1.41%	0.39
$\mathbf{8 9}$	-0.18%	0.14%	0.20	-1.38%	1.42%	0.33
$\mathbf{9 0}$	0.13%	0.14%	0.36	-1.25%	1.42%	0.38

Pre-Commercial Firms

Day	AAR
-10	0.79%
-9	-0.59%
-8	-0.89%
-7	0.30%
-6	-0.24%
-5	-0.17%
-4	-0.18%
-3	-0.87%
-2	0.71%
-1	-0.20%
0	6.99%
1	2.27%
2	0.49%
3	0.75%
4	-0.37%
5	-0.50%
6	-0.52%
7	0.46%
8	0.49%
9	-0.44%
10	-0.77%
11	-0.01%
12	-0.06%
13	-0.68%

AAR St Dev AAR P-Value
0.41

CAAR CAAR St Dev
CAAR St Dev CAAR P-Value

0.96%	0.41	0.79%
0.96%	0.54	0.20%
0.96%	0.35	-0.69%
0.96%	0.75	-0.39%
0.96%	0.80	-0.62%
0.96%	0.86	-0.80%
0.96%	0.85	-0.98%
0.96%	0.36	-1.85%
0.96%	0.46	-1.14%
0.96%	0.84	-1.34%
0.96%	0.00	5.65%
0.96%	0.02	7.92%
0.96%	0.61	8.41%
0.96%	0.43	9.16%
0.96%	0.70	8.79%
0.96%	0.60	8.29%
0.96%	0.59	7.78%
0.96%	0.63	8.24%
0.96%	0.61	8.73%
0.96%	0.64	8.29%
0.96%	0.42	7.51%
0.96%	0.99	7.50%
0.96%	0.95	7.44%
0.96%	0.48	6.76%

0.96%	0.41
1.35%	0.88
1.66%	0.68
1.91%	0.84
2.14%	0.77
2.34%	0.73
2.53%	0.70
2.70%	0.49
2.87%	0.69
3.02%	0.66
3.17%	0.07
3.31%	0.02
3.45%	0.01
3.58%	0.01
3.70%	0.02
3.83%	0.03
3.94%	0.05
4.06%	0.04
4.17%	0.04
4.28%	0.05
4.38%	0.09
4.49%	0.09
4.59%	0.10
4.69%	0.15

$\mathbf{1 4}$	-0.18%	0.96%	0.85	6.58%	4.78%	0.17
$\mathbf{1 5}$	0.51%	0.96%	0.60	7.09%	4.88%	0.15
$\mathbf{1 6}$	-0.18%	0.96%	0.85	6.90%	4.97%	0.16
$\mathbf{1 7}$	-0.22%	0.96%	0.82	6.69%	5.06%	0.19
$\mathbf{1 8}$	-0.25%	0.96%	0.79	6.44%	5.15%	0.21
$\mathbf{1 9}$	-0.33%	0.96%	0.73	6.10%	5.24%	0.24
$\mathbf{2 0}$	0.44%	0.96%	0.64	6.55%	5.32%	0.22
$\mathbf{2 1}$	-0.26%	0.96%	0.78	6.29%	5.41%	0.25
$\mathbf{2 2}$	0.26%	0.96%	0.79	6.55%	5.49%	0.23
$\mathbf{2 3}$	-0.06%	0.96%	0.95	6.49%	5.58%	0.24
$\mathbf{2 4}$	0.19%	0.96%	0.85	6.68%	5.66%	0.24
$\mathbf{2 5}$	0.56%	0.96%	0.56	7.24%	5.74%	0.21
$\mathbf{2 6}$	-0.20%	0.96%	0.84	7.04%	5.82%	0.23
$\mathbf{2 7}$	-0.43%	0.96%	0.65	6.61%	5.90%	0.26
$\mathbf{2 8}$	0.87%	0.96%	0.36	7.48%	5.97%	0.21
$\mathbf{2 9}$	-0.26%	0.96%	0.79	7.22%	6.05%	0.23
$\mathbf{3 0}$	-0.92%	0.96%	0.33	6.30%	6.12%	0.30
$\mathbf{3 1}$	-0.61%	0.96%	0.53	5.69%	6.20%	0.36
$\mathbf{3 2}$	0.01%	0.96%	0.99	5.70%	6.27%	0.36
$\mathbf{3 3}$	0.28%	0.96%	0.77	5.98%	6.34%	0.35
$\mathbf{3 4}$	-0.30%	0.96%	0.76	5.68%	6.42%	0.38
$\mathbf{3 5}$	-0.13%	0.96%	0.89	5.55%	6.49%	0.39
$\mathbf{3 6}$	-0.64%	0.96%	0.50	4.91%	6.56%	0.45
$\mathbf{3 7}$	-0.07%	0.96%	0.94	4.84%	6.63%	0.46
$\mathbf{3 8}$	-0.28%	0.96%	0.77	4.56%	6.69%	0.50
$\mathbf{3 9}$	-0.09%	0.96%	0.93	4.48%	6.76%	0.51
$\mathbf{4 0}$	-1.04%	0.96%	0.28	3.44%	6.83%	0.61
$\mathbf{4 1}$	-0.84%	0.96%	0.38	2.60%	6.90%	0.71
$\mathbf{4 2}$	0.04%	0.96%	0.97	2.63%	6.96%	0.95
$\mathbf{4 3}$	-0.80%	0.96%	0.40	1.83%	7.03%	0.95
$\mathbf{4 4}$	-0.27%	0.96%	0.78	1.57%	7.09%	0.79
$\mathbf{4 5}$	-0.44%	0.96%	0.64	1.12%	7.16%	0.83
$\mathbf{4 6}$	-0.32%	0.96%	0.74	0.80%	7.22%	0.88
$\mathbf{4 7}$	0.21%	0.96%	0.83	1.01%	7.28%	0.91
$\mathbf{4 8}$	-0.46%	0.96%	0.63	0.54%	7.35%	0.89
$\mathbf{4 9}$	-0.88%	0.96%	0.36	-0.34%	7.41%	0.94
$\mathbf{5 0}$	-0.10%	0.96%	0.92	-0.44%	7.47%	0.96
$\mathbf{5 1}$	-0.64%	0.96%	0.51	-1.08%	7.53%	0.95
$\mathbf{5 2}$	-0.06%	0.96%	0.95	-1.14%	7.59%	0.89
$\mathbf{5 3}$	-0.05%	0.96%	0.96	-1.18%	7.65%	0.88
$\mathbf{5 4}$	0.10%	0.96%	0.92	-1.09%	7.71%	0.88
$\mathbf{5 5}$	0.42%	0.96%	0.66	-0.67%	7.77%	0.89
$\mathbf{5 6}$	0.36%	0.96%	0.71	-0.31%	7.83%	0.93
$\mathbf{5 7}$	0.09%	0.96%	0.92	-0.21%	7.89%	0.97
$\mathbf{5 8}$	0.27%	0.96%	0.78	0.06%	7.94%	0.98
$\mathbf{5 9}$	-0.52%	0.96%	0.58	-0.46%	8.00%	0.9

60	0.77\%	0.96\%	0.42	0.31\%	8.06\%	0.97
61	-0.83\%	0.96\%	0.38	-0.53\%	8.11\%	0.95
62	-0.97\%	0.96\%	0.31	-1.50\%	8.17\%	0.85
63	-0.71\%	0.96\%	0.46	-2.20\%	8.23\%	0.79
64	0.06\%	0.96\%	0.95	-2.14\%	8.28\%	0.80
65	-0.08\%	0.96\%	0.93	-2.22\%	8.34\%	0.79
66	0.27\%	0.96\%	0.78	-1.96\%	8.39\%	0.82
67	0.36\%	0.96\%	0.71	-1.60\%	8.45\%	0.85
68	1.07\%	0.96\%	0.26	-0.53\%	8.50\%	0.95
69	-0.43\%	0.96\%	0.65	-0.96\%	8.55\%	0.91
70	0.25\%	0.96\%	0.80	-0.72\%	8.61\%	0.93
71	-0.66\%	0.96\%	0.49	-1.37\%	8.66\%	0.87
72	0.44\%	0.96\%	0.64	-0.93\%	8.71\%	0.92
73	-0.43\%	0.96\%	0.65	-1.36\%	8.77\%	0.88
74	0.71\%	0.96\%	0.46	-0.65\%	8.82\%	0.94
75	-0.05\%	0.96\%	0.96	-0.70\%	8.87\%	0.94
76	-0.70\%	0.96\%	0.47	-1.40\%	8.92\%	0.88
77	0.03\%	0.96\%	0.98	-1.37\%	8.97\%	0.88
78	0.87\%	0.96\%	0.36	-0.50\%	9.02\%	0.96
79	-0.24\%	0.96\%	0.80	-0.74\%	9.07\%	0.93
80	-0.36\%	0.96\%	0.71	-1.10\%	9.12\%	0.90
81	-0.07\%	0.96\%	0.94	-1.18\%	9.17\%	0.90
82	-0.36\%	0.96\%	0.71	-1.53\%	9.22\%	0.87
83	-0.59\%	0.96\%	0.54	-2.12\%	9.27\%	0.82
84	-0.32\%	0.96\%	0.74	-2.44\%	9.32\%	0.79
85	-1.34\%	0.96\%	0.16	-3.78\%	9.37\%	0.69
86	0.23\%	0.96\%	0.81	-3.55\%	9.42\%	0.71
87	-0.54\%	0.96\%	0.57	-4.08\%	9.47\%	0.67
88	-0.54\%	0.96\%	0.57	-4.62\%	9.52\%	0.63
89	0.60\%	0.96\%	0.53	-4.02\%	9.56\%	0.67
90	-0.58\%	0.96\%	0.54	-4.60\%	9.61\%	0.63

[^0]: ${ }^{1}$ Benninga, S. (2014). Using a Two-Factor Model of Returns for an Event Study. In Financial Modeling (pp. 350-355). Cambridge, MA: MIT Press.
 ${ }^{2}$ Schweitzer R. 1989. How do stock returns react to special events? Business Rev (Federal Reserve Bank of Philadelphia), July/August:17-29.

[^1]: ${ }^{3}$ Black HA, Fields MA, Schweitzer RL. 1990. Changes in Interstate Banking Laws: The Impact on Shareholder Wealth. J Finance 45(5):1663-1671.
 ${ }^{4}$ Brown SJ, Warner JB. 1985. Using Daily Stock Returns: The Case of Event Studies. J Finan Econ 14(3):331.

