Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

PML-RARA-associated cooperating mutations belong to a transcriptional network that is deregulated in myeloid leukemias

Abstract

It has been shown that individual acute myeloid leukemia (AML) patients are characterized by one of few initiating DNA mutations and 5–10 cooperating mutations not yet defined among hundreds identified by massive sequencing of AML genomes. We report an in vivo insertional-mutagenesis screen for genes cooperating with one AML initiating mutations (PML-RARA, oncogene of acute promyelocytic leukemia, APL), which allowed identification of hundreds of genetic cooperators. The cooperators are mutated at low frequency in APL or AML patients but are always abnormally expressed in a cohort of 182 APLs and AMLs analyzed. These deregulations appear non-randomly distributed and present in all samples, regardless of their associated genomic mutations. Reverse-engineering approaches showed that these cooperators belong to a single transcriptional gene network, enriched in genes mutated in AMLs, where perturbation of single genes modifies expression of others. Their gene-ontology analysis showed enrichment of genes directly involved in cell proliferation control. Therefore, the pool of PML-RARA cooperating mutations appears large and heterogeneous, but functionally equivalent and deregulated in the majority of APLs and AMLs. Our data suggest that the high heterogeneity of DNA mutations in APLs and AMLs can be reduced to patterns of gene expression deregulation of a single ‘mutated’ gene network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW . Cancer genome landscapes. Science 2013; 339: 1546–1558.

    Article  CAS  Google Scholar 

  2. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  3. Mazzarella L, Riva L, Luzi L, Ronchini C, Pelicci PG . The genomic and epigenomic landscapes of AML. Semin Hematol 2014; 51: 259–272.

    Article  CAS  Google Scholar 

  4. Riva L, Ronchini C, Bodini M, Lo-Coco F, Lavorgna S, Ottone T et al. Acute promyelocytic leukemias share cooperative mutations with other myeloid-leukemia subgroups. Blood Cancer J 2013; 3: e147.

    Article  CAS  Google Scholar 

  5. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    Article  CAS  Google Scholar 

  6. Walrath JC, Hawes JJ, Van Dyke T, Reilly KM . Genetically engineered mouse models in cancer research. Adv Cancer Res 2010; 106: 113–164.

    Article  CAS  Google Scholar 

  7. Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 2013; 155: 948–962.

    Article  CAS  Google Scholar 

  8. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333–339.

    Article  CAS  Google Scholar 

  9. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495–501.

    Article  CAS  Google Scholar 

  10. Melloni GE, Ogier AG, de Pretis S, Mazzarella L, Pelizzola M, Pelicci PG et al. DOTS-Finder: a comprehensive tool for assessing driver genes in cancer genomes. Genome Med 2014; 6: 44.

    Article  Google Scholar 

  11. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371: 2477–2487.

    Article  Google Scholar 

  12. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371: 2488–2498.

    Article  Google Scholar 

  13. Mallardo M, Caronno A, Pruneri G, Raviele PR, Viale A, Pelicci PG et al. NPMc+ and FLT3_ITD mutations cooperate in inducing acute leukaemia in a novel mouse model. Leukemia 2013; 27: 2248–2251.

    Article  CAS  Google Scholar 

  14. McCormack E, Bruserud O, Gjertsen BT . Review: genetic models of acute myeloid leukaemia. Oncogene 2008; 27: 3765–3779.

    Article  CAS  Google Scholar 

  15. Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet 2011; 43: 470–475.

    Article  CAS  Google Scholar 

  16. Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med 2015; 372: 601–612.

    Article  Google Scholar 

  17. Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2009; 113: 1875–1891.

    Article  CAS  Google Scholar 

  18. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer 2010; 102: 1555–1577.

    Article  CAS  Google Scholar 

  19. Mikkers H, Allen J, Knipscheer P, Romeijn L, Hart A, Vink E et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 2002; 32: 153–159.

    Article  CAS  Google Scholar 

  20. de Ridder J, Uren A, Kool J, Reinders M, Wessels L . Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol 2006; 2: e166.

    Article  Google Scholar 

  21. Jonkers J, Berns A . Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim Biophys Acta 1996; 1287: 29–57.

    PubMed  Google Scholar 

  22. Edgar R, Domrachev M, Lash AE . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  Google Scholar 

  23. Minucci S, Monestiroli S, Giavara S, Ronzoni S, Marchesi F, Insinga A et al. PML-RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 2002; 100: 2989–2995.

    Article  CAS  Google Scholar 

  24. Shinto Y, Morimoto M, Katsumata M, Uchida A, Aozasa K, Okamoto M et al. Moloney murine leukemia virus infection accelerates lymphomagenesis in E mu-bcl-2 transgenic mice. Oncogene 1995; 11: 1729–1736.

    CAS  PubMed  Google Scholar 

  25. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989; 56: 673–682.

    Article  CAS  Google Scholar 

  26. Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 2003; 102: 1857–1865.

    Article  CAS  Google Scholar 

  27. Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ et al. New genes involved in cancer identified by retroviral tagging. Nat Genet 2002; 32: 166–1674.

    Article  CAS  Google Scholar 

  28. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al. A census of human cancer genes. Nat Rev Cancer 2004; 4: 177–183.

    Article  CAS  Google Scholar 

  29. Rubio-Perez C, Tamborero D, Schroeder MP, Antolin AA, Deu-Pons J, Perez-Llamas C et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell 2015; 27: 382–396.

    Article  CAS  Google Scholar 

  30. Jones L, Wei G, Sevcikova S, Phan V, Jain S, Shieh A et al. Gain of MYC underlies recurrent trisomy of the MYC chromosome in acute promyelocytic leukemia. J Exp Med 2010; 207: 2581–2594.

    Article  CAS  Google Scholar 

  31. Nucifora G . The EVI1 gene in myeloid leukemia. Leukemia 1997; 11: 2022–2031.

    Article  CAS  Google Scholar 

  32. Fears S, Mathieu C, Zeleznik-Le N, Huang S, Rowley JD, Nucifora G . Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA 1996; 93: 1642–1647.

    Article  CAS  Google Scholar 

  33. Barjesteh van Waalwijk van Doorn-Khosrovani S, Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101: 837–845.

    Article  Google Scholar 

  34. Su G, Lian X, Tan D, Tao H, Liu H, Chen S et al. Aberrant expression of ecotropic viral integration site-1 in acute myeloid leukemia and acute lymphoblastic leukemia. Leuk Lymphoma 2015; 56: 472–479.

    Article  CAS  Google Scholar 

  35. Xi ZF, Russell M, Woodward S, Thompson F, Wagner L, Taetle R . Expression of the Zn finger gene, EVI-1, in acute promyelocytic leukemia. Leukemia 1997; 11: 212–220.

    Article  CAS  Google Scholar 

  36. Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2009; 457: 51–56.

    Article  CAS  Google Scholar 

  37. Ibanez M, Carbonell-Caballero J, Garcia-Alonso L, Such E, Jemenez-Almazan J, Vidal E et al. The mutational landscape of acute promyelocytic leukemia reveals an interacting network of co-occurrences and recurrent mutations. PLoS ONE 2016; 11: e0148346.

    Article  Google Scholar 

  38. Madan V, Shyamsunder P, Han L, Mayakonda A, Nagata Y, Sundaresan J et al. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 2016; 30: 1672–1681.

    Article  CAS  Google Scholar 

  39. Belcastro V, Siciliano V, Gregoretti F, Mithbaokar P, Dharmalingam G, Berlingieri S et al. Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res 2011; 39: 8677–8688.

    Article  CAS  Google Scholar 

  40. Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 2551–2556.

    Article  CAS  Google Scholar 

  41. Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E et al. PML/RAR alpha fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood 2000; 96: 1531–1537.

    CAS  PubMed  Google Scholar 

  42. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 1997; 89: 376–387.

    CAS  PubMed  Google Scholar 

  43. Kogan SC . Mouse models of acute promyelocytic leukemia. Curr Top Microbiol Immunol 2007; 313: 3–29.

    CAS  PubMed  Google Scholar 

  44. Le Beau MM, Davis EM, Patel B, Phan VT, Sohal J, Kogan SC . Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice identify cooperating events and genetic pathways to acute promyelocytic leukemia. Blood 2003; 102: 1072–1074.

    Article  CAS  Google Scholar 

  45. Omidvar N, Maunakea ML, Jones L, Sevcikova S, Yin B, Himmel KL et al. PML-RARalpha co-operates with Sox4 in acute myeloid leukemia development in mice. Haematologica 2013; 98: 424–427.

    Article  CAS  Google Scholar 

  46. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002; 99: 8283–8288.

    Article  CAS  Google Scholar 

  47. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  Google Scholar 

  48. Touw IP, Erkeland SJ . Retroviral insertion mutagenesis in mice as a comparative oncogenomics tool to identify disease genes in human leukemia. Mol Ther 2007; 15: 13–19.

    Article  CAS  Google Scholar 

  49. Uren AG, Kool J, Berns A, van Lohuizen M . Retroviral insertional mutagenesis: past, present and future. Oncogene 2005; 24: 7656–7672.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to: AJ Capobianco for providing reagents and suggestions for the screen; F Bianchi and PP Di Fiore for discussion and suggestions; B Amati and G Nucifora for providing plasmids for cooperation studies; P Dalton for editing the manuscript. This study was supported by AIRC (Associazione Italiana Ricerca sul Cancro; IG10253 (PGP); IG2014 and AIRC 5 × 1000 (AB)) and the Italian Ministry of Health (PGP).

Author contributions

CR designed and performed all experiments, unless specified and wrote the manuscript. AB, LR, LL and GEMM performed bioinformatics analyses. AMG participated in experiments of cooperation. ES performed histopathological and immunohistochemical analyses. GD, MM, VB and DDB performed Netview analysis. SL, FL-C, VR, AB, OS and AR supplied clinical samples. PGP conceived and supervised the project and co-wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Ronchini or P G Pelicci.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronchini, C., Brozzi, A., Riva, L. et al. PML-RARA-associated cooperating mutations belong to a transcriptional network that is deregulated in myeloid leukemias. Leukemia 31, 1975–1986 (2017). https://doi.org/10.1038/leu.2016.386

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.386

This article is cited by

Search

Quick links