Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders

Abstract

Malignant hematological diseases are mainly because of the occurrence of molecular abnormalities leading to the deregulation of signaling pathways essential for precise cell behavior. High-resolution genome analysis using microarray and large-scale sequencing have helped identify several important acquired gene mutations that are responsible for such signaling deregulations across different hematological malignancies. In particular, the genetic landscape of classical myeloproliferative neoplasms (MPNs) has been in large part completed with the identification of driver mutations (targeting the cytokine receptor/Janus-activated kinase 2 (JAK2) pathway) that determine MPN phenotype, as well as additional mutations mainly affecting the regulation of gene expression (epigenetics or splicing regulators) and signaling. At present, most efforts concentrate in understanding how all these genetic alterations intertwine together to influence disease evolution and/or dictate clinical phenotype in order to use them to personalize diagnostic and clinical care. However, it is now evident that factors other than somatic mutations also play an important role in MPN disease initiation and progression, among which germline predisposition (single-nucleotide polymorphisms and haplotypes) may strongly influence the occurrence of MPNs. In this context, the LNK inhibitory adaptor protein encoded by the LNK/SH2B adaptor protein 3 (SH2B3) gene is the target of several genetic variations, acquired or inherited in MPNs, lymphoid leukemia and nonmalignant hematological diseases, underlying its importance in these pathological processes. As LNK adaptor is a key regulator of normal hematopoiesis, understanding the consequences of LNK variants on its protein functions and on driver or other mutations could be helpful to correlate genotype and phenotype of patients and to develop therapeutic strategies to target this molecule. In this review we summarize the current knowledge of LNK function in normal hematopoiesis, the different SH2B3 mutations reported to date and discuss how these genetic variations may influence the development of hematological malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Velazquez L . The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis. Arch Immunol Ther Exp (Warsz) 2012; 60: 415–429.

    Article  CAS  Google Scholar 

  2. Huang X, Li Y, Tanaka K, Moore KG, Hayashi JI . Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C gamma 1, Grb2, and phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 1995; 92: 11618–11622.

    Article  CAS  Google Scholar 

  3. Takaki S, Watts JD, Forbush KA, Nguyen NT, Hayashi J, Alberola-Ila J et al. Characterization of Lnk. An adaptor protein expressed in lymphocytes. J Biol Chem 1997; 272: 14562–14570.

    Article  CAS  Google Scholar 

  4. Li Y, He X, Schembri-King J, Jakes S, Hayashi J . Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. J Immunol 2000; 164: 5199–5206.

    Article  CAS  Google Scholar 

  5. Fitau J, Boulday G, Coulon F, Quillard T, Charreau B . The adaptor molecule Lnk negatively regulates tumor necrosis factor-alpha-dependent VCAM-1 expression in endothelial cells through inhibition of the ERK1 and -2 pathways. J Biol Chem 2006; 281: 20148–20159.

    Article  CAS  Google Scholar 

  6. Kwon S-M, Suzuki T, Kawamoto A, Ii M, Eguchi M, Akimaru H et al. Pivotal role of lnk adaptor protein in endothelial progenitor cell biology for vascular regeneration. Circ Res 2009; 104: 969–977.

    Article  CAS  Google Scholar 

  7. Wang T-C, Chiu H, Chang Y-J, Hsu T-Y, Chiu I-M, Chen L . The adaptor protein SH2B3 (Lnk) negatively regulates neurite outgrowth of PC12 cells and cortical neurons. PLoS ONE 2011; 6: e26433.

    Article  CAS  Google Scholar 

  8. Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely S, Bernstein A et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 2002; 195: 1599–1611.

    Article  CAS  Google Scholar 

  9. Dhe-Paganon S, Werner ED, Nishi M, Hansen L, Chi Y-I, Shoelson SE . A phenylalanine zipper mediates APS dimerization. Nat Struct Mol Biol 2004; 11: 968–974.

    Article  CAS  Google Scholar 

  10. Nishi M, Werner ED, Oh B-C, Frantz JD, Dhe-Paganon S, Hansen L et al. Kinase activation through dimerization by human SH2-B. Mol Cell Biol 2005; 25: 2607–2621.

    Article  CAS  Google Scholar 

  11. Takizawa H, Kubo-Akashi C, Nobuhisa I, Kwon S-M, Iseki M, Taga T et al. Enhanced engraftment of hematopoietic stem/progenitor cells by the transient inhibition of an adaptor protein, Lnk. Blood 2006; 107: 2968–2975.

    Article  CAS  Google Scholar 

  12. Gery S, Gueller S, Chumakova K, Kawamata N, Liu L, Koeffler HP . Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders. Blood 2007; 110: 3360–3364.

    Article  CAS  Google Scholar 

  13. Tong W, Zhang J, Lodish HF . Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 2005; 105: 4604–4612.

    Article  CAS  Google Scholar 

  14. Bersenev A, Wu C, Balcerek J, Tong W . Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J Clin Invest 2008; 118: 2832–2844.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Simon C, Dondi E, Chaix A, de Sepulveda P, Kubiseski TJ, Varin-Blank N et al. Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood 2008; 112: 4039–4047.

    Article  CAS  Google Scholar 

  16. Baran-Marszak F, Magdoud H, Desterke C, Alvarado A, Roger C, Harel S et al. Expression level and differential JAK2-V617F-binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms. Blood 2010; 116: 5961–5971.

    Article  Google Scholar 

  17. Seita J, Ema H, Ooehara J, Yamazaki S, Tadokoro Y, Yamasaki A et al. Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proc Natl Acad Sci USA 2007; 104: 2349–2354.

    Article  CAS  Google Scholar 

  18. Takaki S, Morita H, Tezuka Y, Takatsu K . Enhanced hematopoiesis by hematopoietic progenitor cells lacking intracellular adaptor protein, Lnk. J Exp Med 2002; 195: 151–160.

    Article  CAS  Google Scholar 

  19. Takaki S, Sauer K, Iritani BM, Chien S, Ebihara Y, Tsuji K et al. Control of B cell production by the adaptor protein lnk. Definition Of a conserved family of signal-modulating proteins. Immunity 2000; 13: 599–609.

    Article  CAS  Google Scholar 

  20. Ema H, Sudo K, Seita J, Matsubara A, Morita Y, Osawa M et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev Cell 2005; 8: 907–914.

    Article  CAS  Google Scholar 

  21. Buza-Vidas N, Antonchuk J, Qian H, Månsson R, Luc S, Zandi S et al. Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK. Genes Dev 2006; 20: 2018–2023.

    Article  CAS  Google Scholar 

  22. Cheng Y, Chikwava K, Wu C, Zhang H, Bhagat A, Pei D et al. LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. J Clin Invest 2016; 126: 1267–1281.

    Article  Google Scholar 

  23. Tong W, Lodish HF . Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 2004; 200: 569–580.

    Article  Google Scholar 

  24. Takizawa H, Eto K, Yoshikawa A, Nakauchi H, Takatsu K, Takaki S . Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Exp Hematol 2008; 36: 897–906.

    Article  CAS  Google Scholar 

  25. Takizawa H, Nishimura S, Takayama N, Oda A, Nishikii H, Morita Y et al. Lnk regulates integrin alphaIIbbeta3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest 2010; 120: 179–190.

    Article  CAS  Google Scholar 

  26. Wakioka T, Sasaki A, Mitsui K, Yokouchi M, Inoue A, Komiya S et al. APS, an adaptor protein containing Pleckstrin homology (PH) and Src homology-2 (SH2) domains inhibits the JAK-STAT pathway in collaboration with c-Cbl. Leukemia 1999; 13: 760–767.

    Article  CAS  Google Scholar 

  27. Javadi M, Hofstätter E, Stickle N, Beattie BK, Jaster R, Carter-Su C et al. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor. J Biol Chem 2012; 287: 26223–26234.

    Article  CAS  Google Scholar 

  28. Gery S, Cao Q, Gueller S, Xing H, Tefferi A, Koeffler HP . Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leukoc Biol 2009; 85: 957–965.

    Article  CAS  Google Scholar 

  29. Kurzer JH, Saharinen P, Silvennoinen O, Carter-Su C . Binding of SH2-B family members within a potential negative regulatory region maintains JAK2 in an active state. Mol Cell Biol 2006; 26: 6381–6394.

    Article  CAS  Google Scholar 

  30. Koren-Michowitz M, Gery S, Tabayashi T, Lin D, Alvarez R, Nagler A et al. SH2B3 (LNK) mutations from myeloproliferative neoplasms patients have mild loss of function against wild type JAK2 and JAK2 V617F. Br J Haematol 2013; 161: 811–820.

    Article  CAS  Google Scholar 

  31. Jiang J, Balcerek J, Rozenova K, Cheng Y, Bersenev A, Wu C et al. 14-3-3 regulates the LNK/JAK2 pathway in mouse hematopoietic stem and progenitor cells. J Clin Invest 2012; 122: 2079–2091.

    Article  CAS  Google Scholar 

  32. Bersenev A, Wu C, Balcerek J, Jing J, Kundu M, Blobel GA et al. Lnk constrains myeloproliferative diseases in mice. J Clin Invest 2010; 120: 2058–2069.

    Article  CAS  Google Scholar 

  33. Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014; 124: 2507–2513, quiz 2615.

    Article  CAS  Google Scholar 

  34. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.

    Article  CAS  Google Scholar 

  35. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  Google Scholar 

  36. McMullin MF, Cario H . LNK mutations and myeloproliferative disorders. Am J Hematol 2016; 91: 248–251.

    Article  CAS  Google Scholar 

  37. Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 2010; 116: 988–992.

    Article  CAS  Google Scholar 

  38. Oh ST, Zahn JM, Jones CD, Zhang B, Loh ML, Kantarjian H et al. Identification of novel LNK mutations in patients with chronic myeloproliferative neoplasms and related disorders. Blood 2010; 116: 315–315.

    Article  Google Scholar 

  39. Ha J-S, Jeon D-S . Possible new LNK mutations in myeloproliferative neoplasms. Am J Hematol 2011; 86: 866–868.

    Article  CAS  Google Scholar 

  40. Hurtado C, Erquiaga I, Aranaz P, Miguéliz I, García-Delgado M, Novo FJ et al. LNK can also be mutated outside PH and SH2 domains in myeloproliferative neoplasms with and without V617FJAK2 mutation. Leuk Res 2011; 35: 1537–1539.

    Article  CAS  Google Scholar 

  41. Pardanani A, Lasho T, Finke C, Oh ST, Gotlib J, Tefferi A . LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia 2010; 24: 1713–1718.

    Article  CAS  Google Scholar 

  42. Lasho TL, Tefferi A, Finke C, Pardanani A . Clonal hierarchy and allelic mutation segregation in a myelofibrosis patient with two distinct LNK mutations. Leukemia 2011; 25: 1056–1058.

    Article  CAS  Google Scholar 

  43. Chen Y, Fang F, Hu Y, Liu Q, Bu D, Tan M et al. The polymorphisms in LNK gene correlated to the clinical type of myeloproliferative neoplasms. PLoS ONE 2016; 11: e0154183.

    Article  Google Scholar 

  44. Lasho TL, Pardanani A, Tefferi A . LNK mutations in JAK2 mutation-negative erythrocytosis. N Engl J Med 2010; 363: 1189–1190.

    Article  CAS  Google Scholar 

  45. Spolverini A, Pieri L, Guglielmelli P, Pancrazzi A, Fanelli T, Paoli C et al. Infrequent occurrence of mutations in the PH domain of LNK in patients with JAK2 mutation-negative ‘idiopathic’ erythrocytosis. Haematologica 2013; 98: e101–e102.

    Article  CAS  Google Scholar 

  46. McMullin MF, Wu C, Percy MJ, Tong W . A nonsynonymous LNK polymorphism associated with idiopathic erythrocytosis. Am J Hematol 2011; 86: 962–964.

    Article  CAS  Google Scholar 

  47. Camps C, Petousi N, Bento C, Cario H, Copley RR, McMullin MF et al. Gene panel sequencing improves the diagnostic work-up of patients with idiopathic erythrocytosis and identifies new mutations. Haematologica 2016; 101: 1306–1318.

    Article  CAS  Google Scholar 

  48. Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JHM et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 2008; 359: 2767–2777.

    Article  CAS  Google Scholar 

  49. Auburger G, Gispert S, Lahut S, Omür O, Damrath E, Heck M et al. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2? World J Diabetes 2014; 5: 316–327.

    Article  Google Scholar 

  50. Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir A, Sulem P, Jonsdottir GM et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 2009; 41: 342–347.

    Article  CAS  Google Scholar 

  51. Hunt KA, Zhernakova A, Turner G, Heap GAR, Franke L, Bruinenberg M et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 2008; 40: 395–402.

    Article  CAS  Google Scholar 

  52. Zhernakova A, Elbers CC, Ferwerda B, Romanos J, Trynka G, Dubois PC et al. Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am J Hum Genet 2010; 86: 970–977.

    Article  CAS  Google Scholar 

  53. Alcina A, Vandenbroeck K, Otaegui D, Saiz A, Gonzalez JR, Fernandez O et al. The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes Immun 2010; 11: 439–445.

    Article  CAS  Google Scholar 

  54. Lavrikova EY, Nikitin AG, Kuraeva TL, Peterkova VA, Tsitlidze NM, Chistiakov DA et al. The carriage of the type 1 diabetes-associated R262W variant of human LNK correlates with increased proliferation of peripheral blood monocytes in diabetic patients. Pediatr Diabetes 2011; 12: 127–132.

    Article  CAS  Google Scholar 

  55. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009; 41: 666–676.

    Article  CAS  Google Scholar 

  56. Ikram MK, Sim X, Xueling S, Jensen RA, Cotch MF, Hewitt AW et al. Four novel Loci (19q13, 6q24, 12q24, and 5q14) influence the microcirculation in vivo. PLoS Genet 2010; 6: e1001184.

    Article  Google Scholar 

  57. Flister MJ, Hoffman MJ, Lemke A, Prisco SZ, Rudemiller N, O’Meara CC et al. SH2B3 is a genetic determinant of cardiac inflammation and fibrosis. Circ Cardiovasc Genet 2015; 8: 294–304.

    Article  CAS  Google Scholar 

  58. Dale BL, Madhur MS . Linking inflammation and hypertension via LNK/SH2B3. Curr Opin Nephrol Hypertens 2016; 25: 87–93.

    Article  CAS  Google Scholar 

  59. Daly ME . Determinants of platelet count in humans. Haematologica 2011; 96: 10–13.

    Article  Google Scholar 

  60. Soranzo N, Spector TD, Mangino M, Kühnel B, Rendon A, Teumer A et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 2009; 41: 1182–1190.

    Article  CAS  Google Scholar 

  61. Ganesh SK, Zakai NA, van Rooij FJA, Soranzo N, Smith AV, Nalls MA et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nat Genet 2009; 41: 1191–1198.

    Article  CAS  Google Scholar 

  62. Lesteven E, Picque M, Conejero Tonetti C, Giraudier S, Varin-Blank N, Velazquez L et al. Association of a single-nucleotide polymorphism in the SH2B3 gene with JAK2V617F-positive myeloproliferative neoplasms. Blood 2014; 123: 794–796.

    Article  CAS  Google Scholar 

  63. Wang W, Tang Y, Wang Y, Tascau L, Balcerek J, Tong W et al. LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ Res 2016; 19: e91–e103.

    Google Scholar 

  64. Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 2016; 128: 1121–1128.

    Article  CAS  Google Scholar 

  65. Schumacher FR, Schmit SL, Jiao S, Edlund CK, Wang H, Zhang B et al. Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat Commun 2015; 6: 7138.

    Article  Google Scholar 

  66. Hung RJ, Ulrich CM, Goode EL, Brhane Y, Muir K, Chan AT et al. Cross cancer genomic investigation of inflammation pathway for five common cancers: lung, ovary, prostate, breast, and colorectal cancer. J Natl Cancer Inst 2015; 107: djv246.

    Article  Google Scholar 

  67. Rumi E, Harutyunyan AS, Pietra D, Feenstra JDM, Cavalloni C, Roncoroni E et al. LNK mutations in familial myeloproliferative neoplasms. Blood 2016; 128: 144–145.

    Article  CAS  Google Scholar 

  68. Loscocco GG, Mannarelli C, Pacilli A, Fanelli T, Rotunno G, Gesullo F et al. Germline transmission of LNKE208Q variant in a family with myeloproliferative neoplasms. Am J Hematol 2016; 91: E356.

    Article  Google Scholar 

  69. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  Google Scholar 

  70. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22: 153–166.

    Article  CAS  Google Scholar 

  71. Perez-Garcia A, Ambesi-Impiombato A, Hadler M, Rigo I, LeDuc CA, Kelly K et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood 2013; 122: 2425–2432.

    Article  CAS  Google Scholar 

  72. Lindqvist CM, Lundmark A, Nordlund J, Freyhult E, Ekman D, Carlsson Almlöf J et al. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes. Oncotarget 2016; 7: 64071–64088.

    Article  Google Scholar 

Download references

Acknowledgements

Informed consent was obtained from all subjects with mutations reported in Table 2. This work was supported by grant from Institut National de la Santé et de la Recherche Médicale (Inserm). EV is paid through a grant from Institut National du Cancer, Transla2013.

Author contributions

All co-authors contributed by participating in essential discussions and organization of the text, by writing parts of the document and by correcting and approving the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J-J Kiladjian or L Velazquez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslah, N., Cassinat, B., Verger, E. et al. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia 31, 1661–1670 (2017). https://doi.org/10.1038/leu.2017.139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.139

This article is cited by

Search

Quick links