Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Treatment of acute lymphoblastic leukemia with an rGel/BLyS fusion toxin

Abstract

Acute lymphoblastic leukemia (ALL) is the most common malignancy affecting children and a major cause of mortality from hematopoietic malignancies in adults. A substantial number of patients become drug resistant during chemotherapy, necessitating the development of alternative modes of treatment. rGel (recombinant Gelonin)/BlyS (B-lymphocyte stimulator) is a toxin-cytokine fusion protein used for selective killing of malignant B-cells expressing receptors for B-cell-activating factor (BAFF/BLyS) by receptor-targeted delivery of the toxin, Gelonin. Here, we demonstrate that rGel/BLyS binds to ALL cells expressing BAFF receptor (BAFF-R) and upon internalization, it induces apoptosis of these cells and causes downregulation of survival genes even in the presence of stromal protection. Using an immunodeficient transplant model for human ALL, we show that rGel/BLyS prolongs survival of both Philadelphia chromosome-positive and negative ALL-bearing mice. Furthermore, we used AMD3100, a CXCR4 antagonist, to mobilize the leukemic cells protected in the bone marrow (BM) microenvironment and the combination with rGel/BLyS resulted in a significant reduction of the tumor load in the BM and complete eradication of ALL cells from the circulation. Thus, a combination treatment with the B-cell-specific fusion toxin rGel/BLyS and the mobilizing agent AMD3100 could be an effective alternative approach to chemotherapy for the treatment of primary and relapsed ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pui CH . Recent advances in acute lymphoblastic leukemia. Oncology 2011; 25: 341, 346–347.

    Google Scholar 

  2. Pulte D, Gondos A, Brenner H . Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood 2009; 113: 1408–1411.

    Article  CAS  Google Scholar 

  3. Kreuger A, Garwicz S, Hertz H, Jonmundsson G, Lanning M, Lie SO et al. Central nervous system disease in childhood acute lymphoblastic leukemia: prognostic factors and results of treatment. Pediatr Hematol Oncol 1991; 8: 291–299.

    Article  CAS  Google Scholar 

  4. Reiter A, Schrappe M, Ludwig WD, Hiddemann W, Sauter S, Henze G et al. Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood 1994; 84: 3122–3133.

    CAS  Google Scholar 

  5. Einsiedel HG, von Stackelberg A, Hartmann R, Fengler R, Schrappe M, Janka-Schaub G et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 2005; 23: 7942–7950.

    Article  Google Scholar 

  6. Hardisty RM, McElwain TJ, Darby CW . Vincristine and prednisone for the induction of remissions in acute childhood leukaemia. Br Med J 1969; 2: 662–665.

    Article  CAS  Google Scholar 

  7. Dopfer R, Henze G, Bender-Gotze C, Ebell W, Ehninger G, Friedrich W et al. Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission after intensive primary and relapse therapy according to the BFM- and CoALL-protocols: results of the German Cooperative Study. Blood 1991; 78: 2780–2784.

    CAS  Google Scholar 

  8. Henderson MJ, Choi S, Beesley AH, Sutton R, Venn NC, Marshall GM et al. Mechanism of relapse in pediatric acute lymphoblastic leukemia. Cell Cycle 2008; 7: 1315–1320.

    Article  CAS  Google Scholar 

  9. Rivera GK, Zhou Y, Hancock ML, Gajjar A, Rubnitz J, Ribeiro RC et al. Bone marrow recurrence after initial intensive treatment for childhood acute lymphoblastic leukemia. Cancer 2005; 103: 368–376.

    Article  Google Scholar 

  10. Parameswaran R, Muschen M, Kim YM, Groffen J, Heisterkamp N . A functional receptor for B-cell-activating factor is expressed on human acute lymphoblastic leukemias. Cancer Res 2010; 70: 4346–4356.

    Article  CAS  Google Scholar 

  11. Onda K, Iijima K, Katagiri YU, Okita H, Saito M, Shimizu T et al. Differential effects of BAFF on B cell precursor acute lymphoblastic leukemia and Burkitt lymphoma. Int J Hematol 2010; 91: 808–819.

    Article  CAS  Google Scholar 

  12. Mihalcik SA, Tschumper RC, Jelinek DF . Transcriptional and post-transcriptional mechanisms of BAFF-receptor dysregulation in human B lineage malignancies. Cell Cycle 2010; 9: 4884–4892.

    Article  CAS  Google Scholar 

  13. Maia S, Pelletier M, Ding J, Hsu YM, Sallan SE, Rao SP et al. Abberant Expression of Functional BAFF-system receptors by malignant B-cell precursors impacts leukemia cell survival. PLoS One 2011; 6: e20787.

    Article  CAS  Google Scholar 

  14. Mackay F, Schneider P, Rennert P, Browning J . BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 2003; 21: 231–264.

    Article  CAS  Google Scholar 

  15. Mackay F, Browning JL . BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2002; 2: 465–475.

    Article  CAS  Google Scholar 

  16. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000; 404: 995–999.

    Article  CAS  Google Scholar 

  17. Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 2001; 11: 1547–1552.

    Article  CAS  Google Scholar 

  18. Rennert P, Schneider P, Cachero TG, Thompson J, Trabach L, Hertig S et al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J Exp Med 2000; 192: 1677–1684.

    Article  CAS  Google Scholar 

  19. Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 2001; 293: 2108–2111.

    Article  CAS  Google Scholar 

  20. Do RK, Chen-Kiang S . Mechanism of BLyS action in B cell immunity. Cytokine Growth Factor Rev 2002; 13: 19–25.

    Article  CAS  Google Scholar 

  21. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001; 293: 2111–2114.

    Article  CAS  Google Scholar 

  22. Schneider P, Takatsuka H, Wilson A, Mackay F, Tardivel A, Lens S et al. Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. J Exp Med 2001; 194: 1691–1697.

    Article  CAS  Google Scholar 

  23. Kern C, Cornuel JF, Billard C, Tang R, Rouillard D, Stenou V et al. Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 2004; 103: 679–688.

    Article  CAS  Google Scholar 

  24. Briones J, Timmerman JM, Hilbert DM, Levy R . BLyS and BLyS receptor expression in non-Hodgkin's lymphoma. Exp Hematol 2002; 30: 135–141.

    Article  CAS  Google Scholar 

  25. Lyu MA, Cheung LH, Hittelman WN, Marks JW, Aguiar RC, Rosenblum MG . The rGel/BLyS fusion toxin specifically targets malignant B cells expressing the BLyS receptors BAFF-R, TACI, and BCMA. Mol Cancer Ther 2007; 6: 460–470.

    Article  CAS  Google Scholar 

  26. Stirpe F, Olsnes S, Pihl A . Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. Isolation, characterization, and preparation of cytotoxic complexes with concanavalin A. J Biol Chem 1980; 255: 6947–6953.

    CAS  Google Scholar 

  27. Rosenblum MG, Cheung LH, Liu Y, Marks 3rd JW . Design, expression, purification, and characterization, in vitro and in vivo, of an antimelanoma single-chain Fv antibody fused to the toxin gelonin. Cancer Res 2003; 63: 3995–4002.

    CAS  Google Scholar 

  28. Rosenblum MG, Murray JL, Cheung L, Rifkin R, Salmon S, Bartholomew R . A specific and potent immunotoxin composed of antibody ZME-018 and the plant toxin gelonin. Mol Biother 1991; 3: 6–13.

    CAS  Google Scholar 

  29. Duzkale H, Pagliaro LC, Rosenblum MG, Varan A, Liu B, Reuben J et al. Bone marrow purging studies in acute myelogenous leukemia using the recombinant anti-CD33 immunotoxin HuM195/rGel. Biol Blood Marrow Transplant 2003; 9: 364–372.

    Article  CAS  Google Scholar 

  30. Wen X, Lyu MA, Zhang R, Lu W, Huang Q, Liang D et al. Biodistribution, Pharmacokinetics, and Nuclear Imaging Studies of (111)In-labeled rGel/BLyS Fusion Toxin in SCID Mice Bearing B Cell Lymphoma. Mol Imaging Biol 2011; 13: 721–729.

    Article  Google Scholar 

  31. Lyu MA, Rai D, Ahn KS, Sung B, Cheung LH, Marks JW et al. The rGel/BLyS fusion toxin inhibits diffuse large B-cell lymphoma growth in vitro and in vivo. Neoplasia 2010; 12: 366–375.

    Article  CAS  Google Scholar 

  32. Lyu MA, Sung B, Cheung LH, Marks JW, Aggarwal BB, Aguiar RC et al. The rGel/BLyS fusion toxin inhibits STAT3 signaling via down-regulation of interleukin-6 receptor in diffuse large B-cell lymphoma. Biochem Pharmacol 2010; 80: 1335–1342.

    Article  CAS  Google Scholar 

  33. Nimmanapalli R, Lyu MA, Du M, Keating MJ, Rosenblum MG, Gandhi V . The growth factor fusion construct containing B-lymphocyte stimulator (BLyS) and the toxin rGel induces apoptosis specifically in BAFF-R-positive CLL cells. Blood 2007; 109: 2557–2564.

    Article  CAS  Google Scholar 

  34. Duy C, Hurtz C, Shojaee S, Cerchietti L, Geng H, Swaminathan S et al. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature 2011; 473: 384–388.

    Article  CAS  Google Scholar 

  35. Addeo R, Caraglia M, Baldi A, D’Angelo V, Casale F, Crisci S et al. Prognostic role of bcl-xL and p53 in childhood acute lymphoblastic leukemia (ALL). Cancer Biol Ther 2005; 4: 32–38.

    Article  CAS  Google Scholar 

  36. Campana D, Coustan-Smith E, Manabe A, Buschle M, Raimondi SC, Behm FG et al. Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood 1993; 81: 1025–1031.

    CAS  Google Scholar 

  37. Stam RW, Den Boer ML, Schneider P, de Boer J, Hagelstein J, Valsecchi MG et al. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood 2010; 115: 1018–1025.

    Article  CAS  Google Scholar 

  38. Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel AE . The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. J Immunol 2000; 165: 1743–1754.

    Article  CAS  Google Scholar 

  39. Tracey L, Perez-Rosado A, Artiga MJ, Camacho FI, Rodríguez A, Martínez N et al. Expression of the NF-kappaB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol 2005; 206: 123–134.

    Article  CAS  Google Scholar 

  40. Bradstock KF, Makrynikola V, Bianchi A, Shen W, Hewson J, Gottlieb DJ . Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 2000; 14: 882–888.

    Article  CAS  Google Scholar 

  41. Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF . The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 2001; 29: 1439–1447.

    Article  CAS  Google Scholar 

  42. De Clercq E . Inhibition of HIV infection by bicyclams, highly potent and specific CXCR4 antagonists. Mol Pharmacol 2000; 57: 833–839.

    CAS  Google Scholar 

  43. Juarez J, Bradstock KF, Gottlieb DJ, Bendall LJ . Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia 2003; 17: 1294–1300.

    Article  CAS  Google Scholar 

  44. Nagasawa T, Kikutani H, Kishimoto T . Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 1994; 91: 2305–2309.

    Article  CAS  Google Scholar 

  45. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM . Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell 2009; 4: 62–72.

    Article  CAS  Google Scholar 

  46. Thompson JS, Schneider P, Kalled SL, Wang L, Lefevre EA, Cachero TG et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med 2000; 192: 129–135.

    Article  CAS  Google Scholar 

  47. Vincent FB, Morad EF, Mackay F . BAFF and innate immunity: new therapeutic targets for systemic lupus erythematosus. Immunol Cell Biol 2012; e-pub ahead of print 10 January 2012; doi: 10.1038/icb.2011.111.

    Article  CAS  Google Scholar 

  48. Parameswaran R, Yu M, Lim M, Groffen J, Heisterkamp N . Combination of drug therapy in acute lymphoblastic leukemia with a CXCR4 antagonist. Leukemia 2011; 25: 1314–1323.

    Article  CAS  Google Scholar 

  49. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009; 11: 6215–6224.

    Article  Google Scholar 

  50. Yu M, Gang EJ, Parameswaran R, Stoddart S, Fei F, Schmidhuber S et al. AMD3100 sensitizes acute lymphoblastic leukemia cells to chemotherapy in vivo. Blood Cancer Journal 2011; e-pub ahead of print 1 April 2011; doi:10.1038/bcj.2011.13.

    Article  CAS  Google Scholar 

  51. Weisberg E, Azab AK, Manley PW, Kung AL, Christie AL, Bronson R et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 2011; e-pub ahead of print 20 December 2011; doi: 10.1038/leu.2011.360.

    Article  Google Scholar 

  52. Geay JF, Buet D, Zhang Y, Foudi A, Jarrier P, Berthebaud M et al. p210BCR-ABL inhibits SDF-1 chemotactic response via alteration of CXCR4 signaling and down-regulation of CXCR4 expression. Cancer Res 2005; 65: 2676–2683.

    Article  CAS  Google Scholar 

  53. Chen YY, Malik M, Tomkowicz BE, Collman RG, Ptasznik A . BCR-ABL1 alters SDF-1alpha-mediated adhesive responses through the beta2 integrin LFA-1 in leukemia cells. Blood 2008; 111: 5182–5186.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Donna Foster for excellent care of the mice. This work was supported by PHS grant CA090321 (to NH), by the William Lawrence and Blanche Hughes Foundation (to NH, JG), and a Translational Research Award (LLS 6234-07) from the Leukemia and Lymphoma Society (to MGR) and in part by the Clayton Foundation for Research (MGR). M-AL and MGR were supported by the Clayton Foundation.

Author contributions

RP designed and performed experiments, analyzed data and wrote the manuscript; MY and ML performed experiments and analyzed data; M-AL, MGR and JG contributed essential reagents and provided input in the design of experiments; NH designed experiments, analyzed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Heisterkamp.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parameswaran, R., Yu, M., Lyu, MA. et al. Treatment of acute lymphoblastic leukemia with an rGel/BLyS fusion toxin. Leukemia 26, 1786–1796 (2012). https://doi.org/10.1038/leu.2012.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.54

Keywords

This article is cited by

Search

Quick links