Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Signal Transduction and Cytokines

Multiple pathways contribute to the hyperproliferative responses from truncated granulocyte colony-stimulating factor receptors

Abstract

Mutations in the granulocyte colony-stimulating factor receptor (G-CSF-R) gene leading to a truncated protein have been identified in a cohort of neutropenia patients highly predisposed to acute myeloid leukemia. Such mutations act in a dominant manner resulting in hyperproliferation but impaired differentiation in response to G-CSF. This is due, at least in part, to defective internalization and loss of binding sites for several negative regulators, leading to sustained receptor activation. However, those signaling pathways responsible for mediating the hyperproliferative function have remained unclear. In this study, analysis of an additional G-CSF-R mutant confirmed the importance of residues downstream of Box 2 as important contributors to the sustained proliferation. However, maximal proliferation correlated with the ability to robustly activate signal transducer and activator of transcription (STAT) 5 in a sustained manner, whereas co-expression of dominant-negative STAT5, but not dominant-negative STAT3, was able to inhibit G-CSF-stimulated proliferation from a truncated receptor. Furthermore, a Janus kinase (JAK) inhibitor also strongly reduced the proliferative response, whereas inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) or phosphatidylinositol (PI) 3-kinase reduced proliferation to a lesser degree. These data suggest that sustained JAK2/STAT5 activation is a major contributor to the hyperproliferative function of truncated G-CSF receptors, with pathways involving MEK and PI 3-kinase playing a reduced role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. van de Geijn GJ, Aarts LHJ, Erkeland SJ, Prasher JM, Touw IP . Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease. Rev Physiol Biochem Pharmacol 2003; 149: 53–71.

    Article  CAS  PubMed  Google Scholar 

  2. de Koning JP, Schelen AM, Dong F, van Buitenen C, Burgering BM, Bos JL et al. Specific involvement of tyrosine 764 of human granulocyte colony-stimulating factor receptor in signal transduction mediated by p145/Shc/GRB2 or p90/GRB2 complexes. Blood 1996; 87: 132–140.

    CAS  PubMed  Google Scholar 

  3. Ward AC, Smith L, de Koning JP, van Aesch Y, Touw IP . Multiple signals mediate proliferation, differentiation and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells. J Biol Chem 1999; 274: 14956–14962.

    Article  CAS  PubMed  Google Scholar 

  4. Tian S-S, Lamb P, Seidel HM, Stein RB, Rosen J . Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 1994; 84: 1760–1764.

    CAS  PubMed  Google Scholar 

  5. Nicholson SE, Starr R, Novak U, Hilton DJ, Layton JE . Tyrosine residues in the granulocyte colony-stimulating receptor (G-CSF-R) mediate G-CSF-induced differentiation of murine myeloid leukemic (M1) cells. J Biol Chem 1996; 271: 26947–26953.

    Article  CAS  PubMed  Google Scholar 

  6. de Koning JP, Dong F, Smith L, Schelen AM, Barge RM, van der Plas DC et al. The membrane-distal cytoplasmic region of human granulocyte colony-stimulating factor receptor is required for STAT3 but not STAT1 homodimer formation. Blood 1996; 87: 1335–1342.

    CAS  PubMed  Google Scholar 

  7. Shimoda K, Feng J, Murakami H, Nagata S, Watling D, Rogers NC et al. Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood 1997; 90: 597–604.

    CAS  PubMed  Google Scholar 

  8. Ward AC, Hermans MHA, Smith L, van Aesch YM, Schelen AM, Antonissen C et al. Tyrosine-dependent and independent mechanisms of STAT3 activation by the human granulocyte colony-stimulating factor (G-CSF) receptor are differentially utilized depending on G-CSF concentration. Blood 1999; 93: 113–124.

    CAS  PubMed  Google Scholar 

  9. Bashey A, Healy L, Marshall CJ . Proliferative but not nonproliferative responses to granulocyte-colony stimulating factor are associated with rapid activation of the p21ras/MAP kinase signalling pathway. Blood 1994; 83: 949–957.

    CAS  PubMed  Google Scholar 

  10. Barge RM, de Koning JP, Pouwels K, Dong F, Löwenberg B, Touw IP . Tryptophan 650 of human granulocyte colony-stimulating factor (G-CSF) receptor, implicated in the activation of JAK2, is also required for G-CSF-mediated activation of signaling complexes of the p21ras route. Blood 1996; 87: 2148–2153.

    CAS  PubMed  Google Scholar 

  11. de Koning JP, Soede-Bobok AA, Schelen AM, Smith L, van Leeuwen D, Santini V et al. Proliferation signaling and activation of Shc, p21Ras and Myc via tyrosine 764 of human granulocyte colony-stimulating factor receptor. Blood 1998; 91: 1924–1933.

    CAS  PubMed  Google Scholar 

  12. Rausch O, Marshall CJ . Cooperation of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways during granulocyte colony-stimulating factor-induced hemopoietic cell proliferation. J Biol Chem 1999; 274: 4096–4105.

    Article  CAS  PubMed  Google Scholar 

  13. Akbarzadeh S, Ward AC, McPhee DO, Alexander WS, Lieschke GJ, Layton JE . Tyrosine residues of the granulocyte colony-stimulating factor receptor transmit proliferation and differentiation signals in murine bone marrow cells. Blood 2002; 99: 879–887.

    Article  CAS  PubMed  Google Scholar 

  14. Hunter MG, Avalos BR . Phosphatidylinositol 3′-kinase and SH2-containing inositol phosphatase (SHIP) are recruited by distinct positive and negative growth-regulatory domains in the granulocyte colony-stimulating factor receptor. J Immunol 1998; 160: 4979–4987.

    CAS  PubMed  Google Scholar 

  15. Hunter MG, Avalos BR . Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myeloid leukemia confer resistance to apoptosis and enhance cell survival. Blood 2000; 95: 2132–2137.

    CAS  PubMed  Google Scholar 

  16. Dong F, Larner AC . Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from the Janus kinases. Blood 2000; 95: 1656–1662.

    CAS  PubMed  Google Scholar 

  17. Dong F, van Buitenen C, Pouwels K, Hoefsloot LH, Löwenberg B, Touw IP . Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol Cell Biol 1993; 13: 7774–7781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong F, Hoefsloot LH, Schelen AM, Broeders CA, Meijer Y, Veerman AJ et al. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia. Proc Natl Acad Sci USA 1994; 91: 4480–4484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong F, Brynes RK, Tidow N, Welte K, Löwenberg B, Touw IP . Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 1995; 333: 487–493.

    Article  CAS  PubMed  Google Scholar 

  20. Dong F, Dale DC, Bonilla MA, Freedman M, Fasth A, Neijens HJ et al. Mutations in the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Leukemia 1997; 11: 120–125.

    Article  CAS  PubMed  Google Scholar 

  21. McLemore ML, Poursine-Laurent J, Link DC . Increased granulocyte colony-stimulating factor responsiveness but normal resting granulopoiesis in mice carrying a targeted granulocyte colony-stimulating factor receptor mutation derived from a patient with severe congenital neutropenia. J Clin Invest 1998; 102: 483–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hermans MHA, Ward AC, Antonissen C, Karis A, Lowenberg B, Touw IP . Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood 1998; 92: 32–39.

    CAS  PubMed  Google Scholar 

  23. Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 2000; 96: 2317–2322.

    CAS  PubMed  Google Scholar 

  24. Hermans MH, Touw IP . Significance of neutrophil elastase mutations versus G-CSF receptor mutations for leukemic progression of congenital neutropenia. Blood 2001; 97: 2185–2186.

    Article  CAS  PubMed  Google Scholar 

  25. Mitsui T, Watanabe S, Taniguchi Y, Hanada S, Ebihara Y, Sato T et al. Impaired neutrophil maturation in truncated murine G-CSF receptor transgenic mice. Blood 2003; 101: 2990–2995.

    Article  CAS  PubMed  Google Scholar 

  26. Hermans MHA, Antonissen C, Ward AC, Mayen AEM, Ploemacher RE, Touw IP . Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene. J Exp Med 1999; 189: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ward AC, van Aesch YM, Schelen AM, Touw IP . Defective internalization and sustained activation of truncated granulocyte colony-stimulating factor receptor found in severe congenital neutropenia/acute myeloid leukemia. Blood 1999; 93: 447–458.

    CAS  PubMed  Google Scholar 

  28. Hunter MG, Avalos BR . Deletion of a critical internalization domain in the G-CSFR in acute myelogenous leukemia preceded by severe congenital neutropenia. Blood 1999; 93: 440–446.

    CAS  PubMed  Google Scholar 

  29. van de Geijn GJ, Gits J, Aarts LH, Heijmans-Antonissen C, Touw IP . G-CSF receptor truncations found in SCN/AML relieve SOCS3-controlled inhibition of STAT5 but leave suppression of STAT3 intact. Blood 2004; 104: 667–674.

    Article  CAS  PubMed  Google Scholar 

  30. Dong F, Qiu Y, Yi T, Touw IP, Larner AC . The carboxyl terminus of the granulocyte colony-stimulating factor receptor, truncated in patients with severe congenital neutropenia/acute myeloid leukemia, is required for SH2-containing phosphatase-1 suppression of Stat activation. J Immunol 2001; 167: 6447–6452.

    Article  CAS  PubMed  Google Scholar 

  31. Hunter MG, Jacob A, O’Donnell LC, Agler A, Druhan LJ, Coggeshall KM et al. Loss of SHIP and CIS recruitment to the granulocyte colony-stimulating factor receptor contribute to hyperproliferative responses in severe congenital neutropenia/acute myelogenous leukemia. J Immunol 2004; 173: 5036–5045.

    Article  CAS  PubMed  Google Scholar 

  32. Dong F, Liu X, de Koning JP, Touw IP, Henninghausen L, Larner A et al. Stimulation of Stat5 by granulocyte colony-stimulating factor (G-CSF) is modulated by two distinct cytoplasmic regions of the G-CSF receptor. J Immunol 1998; 161: 6503–6509.

    CAS  PubMed  Google Scholar 

  33. Wang D, Stravopodis D, Teglund S, Kitazawa J, Ihle JN . Naturally occurring dominant negative variants of Stat5. Mol Cell Biol 1996; 16: 6141–6148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N et al. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J 1996; 15: 3651–3658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lacombe F, Belloc F . Flow cytometry study of cell cycle, apoptosis and drug resistance in acute leukemia. Hematol Cell Ther 1996; 38: 495–504.

    Article  CAS  PubMed  Google Scholar 

  36. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39–51.

    Article  CAS  PubMed  Google Scholar 

  37. Wagner BJ, Hayes TE, Hoban CJ, Cochran BH . The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J 1990; 9: 4477–4484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ilaria Jr RL, Hawley RG, Van Etten RA . Dominant negative mutants implicate STAT5 in myeloid cell proliferation and neutrophil differentiation. Blood 1999; 93: 4154–4166.

    CAS  PubMed  Google Scholar 

  39. de Koning JP, Soede-Bobok AA, Ward AC, Schelen AM, Antonissen C, van Leeuwen D et al. STAT3-mediated differentiation and survival and of myeloid cells in response to granulocyte colony-stimulating factor: role for the cyclin-dependent kinase inhibitor p27(Kip1). Oncogene 2000; 19: 3290–3298.

    Article  CAS  PubMed  Google Scholar 

  40. Lee CK, Raz R, Gimeno R, Gertner R, Wistinghausen B, Takeshita K et al. STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 2002; 17: 63–72.

    Article  CAS  PubMed  Google Scholar 

  41. Kamezaki K, Shimoda K, Numata A, Haro T, Kakumitsu H, Yoshie M et al. Role of Stat3 and ERK in G-CSF signaling. Stem Cells 2005; 23: 252–263.

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen KT, Zong CS, Uttamsingh S, Sachdev P, Bhanot M, Le MT et al. The role of phosphatidylinositol 3-kinase, rho family GTPases and STAT3 in Ros-induced cell transformation. J Biol Chem 2002; 277: 11107–11115.

    Article  CAS  PubMed  Google Scholar 

  43. Wellbrock C, Fischer P, Schartl M . PI3kinase is involved in mitogenic signaling by the oncogenic receptor tyrosine kinase Xiphophorus melanoma receptor kinase in fish melanoma. Exp Cell Res 1999; 251: 340–349.

    Article  CAS  PubMed  Google Scholar 

  44. Morcinek JC, Weisser C, Geissinger E, Schartl M, Wellbrock C . Activation of STAT5 triggers proliferation and contributes to anti-apoptotic signalling mediated by the oncogenic Xmrk kinase. Oncogene 2002; 21: 1668–1678.

    Article  CAS  PubMed  Google Scholar 

  45. Grishin A, Sinha S, Roginskaya V, Boyer MJ, Gomez-Cambronero J, Zuo S et al. Involvement of Shc and Cbl-PI 3-kinase in Lyn-dependent proliferative signaling pathways for G-CSF. Oncogene 2000; 19: 97–105.

    Article  CAS  PubMed  Google Scholar 

  46. Shapiro P . Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Crit Rev Clin Lab Sci 2002; 39: 285–330.

    Article  CAS  PubMed  Google Scholar 

  47. Ward AC, Monkhouse JL, Hamilton JA, Csar XF . Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor. Biochim Biophys Acta 1998; 1448: 70–76.

    Article  CAS  PubMed  Google Scholar 

  48. Druker BJ, Neumann M, Okuda K, Franza BRJ, Griffin JD . rel is rapidly tyrosine phosphorylated following granulocyte-colony stimulating factor treatment of human neutrophils. J Biol Chem 1994; 269: 5387–5390.

    CAS  PubMed  Google Scholar 

  49. Cristofanelli B, Valentinis B, Soddu S, Rizzo MG, Marchetti A, Bossi G et al. Cooperative transformation of 32D cells by the combined expression of IRS-1 and v-Ha-Ras. Oncogene 2000; 19: 3245–3255.

    Article  CAS  PubMed  Google Scholar 

  50. Baumann MA, Paul CC, Lemley-Gillespie S, Oyster M, Gomez-Cambronero J . Modulation of MEK activity during G-CSF signaling alters proliferative versus differentiative balancing. Am J Hematol 2001; 68: 99–105.

    Article  CAS  PubMed  Google Scholar 

  51. Hermans MH, van de Geijn GJ, Antonissen C, Gits J, van Leeuwen D, Ward AC et al. Signaling mechanisms coupled to tyrosines in the granulocyte colony-stimulating factor receptor orchestrate G-CSF-induced expansion of myeloid progenitor cells. Blood 2003; 101: 2584–2590.

    Article  CAS  PubMed  Google Scholar 

  52. Ward AC, Touw I, Yoshimura A . The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 2000; 95: 19–29.

    CAS  PubMed  Google Scholar 

  53. De Keersmaecker K, Cools J . Chronic myeloproliferative disorders: a tyrosine kinase tale. Leukemia 2006; 20: 200–205.

    Article  CAS  PubMed  Google Scholar 

  54. Schwaller J, Parganas E, Wang D, Cain D, Aster JC, Williams IR et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell Biol 2000; 6: 693–704.

    CAS  Google Scholar 

  55. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD . STAT5 activation contributes to growth and viability in bcr/Abl-transformed cells. Blood 2000; 95: 2119–2125.

    Google Scholar 

  56. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189: 1229–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ren S, Cai HR, Li M, Furth PA . Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene 2002; 21: 4335–4339.

    Article  CAS  PubMed  Google Scholar 

  58. Moriggl R, Sexl V, Kenner L, Duntsch C, Stangl K, Gingras S et al. Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell 2005; 7: 87–99.

    Article  CAS  PubMed  Google Scholar 

  59. Lewis RS, Stephenson SEM, Ward AC . Constitutive activation of zebrafish stat5 expands hematopoietic populations in vivo. Exp Hematol 2006; 34: 179–187.

    Article  CAS  PubMed  Google Scholar 

  60. Luo H, Rose P, Barber D, Hanratty WP, Lee S, Roberts TM et al. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol 1997; 17: 1562–1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matsumura I, Kitamura T, Wakao H, Tanaka H, Hashimoto K, Albanese C et al. Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J 1999; 18: 1367–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsuruyama T, Nakamura T, Jin G, Ozeki M, Yamada Y, Hiai H . Constitutive activation of Stat5a by retrovirus integration in early pre-B lymphomas of SL/Kh strain mice. Proc Natl Acad Sci USA 2002; 99: 8253–8258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Debierre-Grockiego F . Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies. Apoptosis 2004; 9: 717–728.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cristal Peck for expert help with paper preparation, Dora McPhee, Louise Wangerek and Michelle Hookham for technical assistance, as well as Mirjiam Hermans, Jim Johnston, Karim Dib and Massimo Gadina for reagents. This work was supported by grants from the KWF Kankerbestrijding, the NWO and the Deakin University Central Research Grants Scheme. ACW was variously supported by an EMBO Long Term Fellowship, a Sylvia and Charles Viertel Senior Medical Research Fellowship and a Deakin University International Study Program Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A C Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gits, J., van Leeuwen, D., Carroll, H. et al. Multiple pathways contribute to the hyperproliferative responses from truncated granulocyte colony-stimulating factor receptors. Leukemia 20, 2111–2118 (2006). https://doi.org/10.1038/sj.leu.2404448

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404448

Keywords

This article is cited by

Search

Quick links