Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

A sustained activation of PI3K/NF-κB pathway is critical for the survival of chronic lymphocytic leukemia B cells

Abstract

The progressive rise of mature CD5+ B lymphocytes, despite the low proportion of proliferating cells, has led to the notion that B cell chronic lymphocytic leukemia (B-CLL) is primarily related to defective apoptosis. The microenvironment likely plays a prominent role because the malignant cells progressively accumulate in vivo, whereas they rapidly undergo spontaneous apoptosis when cultured in vitro. To assess microenvironment-mediated survival signals, B-CLL cells were cultured with a murine fibroblast cell line, Ltk, with and without an agonistic antibody to CD40. Spontaneous apoptosis was associated with the loss of Akt and NF-κB activities. Interactions with fibroblasts sustained a basal level of Akt and NF-κB activities, which was dependent on phosphatidylinositol-3 kinase (PI3K). Constitutive activity of the PI3K pathway in B-CLL cells when cultured with fibroblasts prevented the downregulation of the prosurvival Bcl-2 family protein Bcl-xL and the caspase inhibitor proteins FLIPL and XIAP, and consequently caspase-3 activation and apoptosis. CD40 crosslinking in B-CLL cells did not further prevent murine fibroblasts-mediated apoptosis but induced cell proliferation, which was associated with an increase of Akt and NF-κB activation compared with cells cultured with fibroblasts alone. The PI3K pathway seems to play a pivotal role in B-CLL cell survival and growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rozman C, Montserrat E . Chronic lymphocytic leukemia. N Engl J Med 1995; 333: 1052–1057.

    Article  CAS  Google Scholar 

  2. Freedman AS, Boyd AW, Bieber FR, Daley J, Rosen K, Horowitz JC et al. Normal cellular counterparts of B cell chronic lymphocytic leukemia. Blood 1987; 70: 418–427.

    CAS  PubMed  Google Scholar 

  3. Bannerji R, Byrd JC . Update on the biology of chronic lymphocytic leukemia. Curr Opin Oncol 2000; 12: 22–29.

    Article  CAS  Google Scholar 

  4. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF . Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 1989; 71: 343–350.

    Article  CAS  Google Scholar 

  5. Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV . Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 1996; 92: 97–103.

    Article  CAS  Google Scholar 

  6. Lagneaux L, Delforge A, Bron D, De BC, Stryckmans P . Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 1998; 91: 2387–2396.

    CAS  PubMed  Google Scholar 

  7. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell'Aquila M, Kipps TJ . Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 2000; 96: 2655–2663.

    CAS  PubMed  Google Scholar 

  8. Pedersen IM, Kitada S, Leoni LM, Zapata JM, Karras JG, Tsukada N et al. Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood 2002; 100: 1795–1801.

    Article  CAS  Google Scholar 

  9. Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, Van Kooten C et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12: 881–922.

    Article  CAS  Google Scholar 

  10. Liu YJ, Johnson GD, Gordon J, MacLennan IC . Germinal centres in T-cell-dependent antibody responses. Immunol Today 1992; 13: 17–21.

    Article  CAS  Google Scholar 

  11. Fluckiger AC, Rossi JF, Bussel A, Bryon P, Banchereau J, Defrance T . Responsiveness of chronic lymphocytic leukemia B cells activated via surface Igs or CD40 to B-cell tropic factors. Blood 1992; 80: 3173–3181.

    CAS  PubMed  Google Scholar 

  12. Osorio LM, Aguilar-Santelises M . Apoptosis in B-chronic lymphocytic leukaemia. Med Oncol 1998; 15: 234–240.

    Article  CAS  Google Scholar 

  13. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783.

    Article  CAS  Google Scholar 

  14. Banchereau J, de Paoli P, Valle A, Garcia E, Rousset F . Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 1991; 251: 70–72.

    Article  CAS  Google Scholar 

  15. Buske C, Gogowski G, Schreiber K, Rave FM, Hiddemann W, Wormann B . Stimulation of B-chronic lymphocytic leukemia cells by murine fibroblasts, IL-4, anti-CD40 antibodies, and the soluble CD40 ligand. Exp Hematol 1997; 25: 329–337.

    CAS  PubMed  Google Scholar 

  16. Datta SR, Brunet A, Greenberg ME . Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–2927.

    Article  CAS  Google Scholar 

  17. Durie FH, Fava RA, Foy TM, Aruffo A, Ledbetter JA, Noelle RJ . Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 1993; 261: 1328–1330.

    Article  CAS  Google Scholar 

  18. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997; 7: 261–269.

    Article  CAS  Google Scholar 

  19. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 1997; 277: 567–570.

    Article  CAS  Google Scholar 

  20. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Article  CAS  Google Scholar 

  21. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    Article  CAS  Google Scholar 

  22. Kops GJ, Burgering BM . Forkhead transcription factors are targets of signalling by the proto-oncogene PKB (C-AKT). J Anat 2000; 4: 571–574.

    Article  Google Scholar 

  23. Beraud C, Henzel WJ, Baeuerle PA . Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation. Proc Natl Acad Sci USA 1999; 96: 429–434.

    Article  CAS  Google Scholar 

  24. Romashkova JA, Makarov SS . NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401: 86–90.

    Article  CAS  Google Scholar 

  25. Kane LP, Shapiro VS, Stokoe D, Weiss A . Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 1999; 9: 601–604.

    Article  CAS  Google Scholar 

  26. Ghosh S, May MJ, Kopp EB . NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225–260.

    Article  CAS  Google Scholar 

  27. Franke TF, Kaplan DR, Cantley LC . PI3K: downstream AKTion blocks apoptosis. Cell 1997; 88: 435–437.

    Article  CAS  Google Scholar 

  28. Karin M, Ben Neriah Y . Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18: 621–663.

    Article  CAS  Google Scholar 

  29. Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin Jr S, Mayo MW . Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 2000; 20: 1626–1638.

    Article  CAS  Google Scholar 

  30. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998; 17: 2215–2223.

    Article  CAS  Google Scholar 

  31. Yeh JH, Hsu SC, Han SH, Lai MZ . Mitogen-activated protein kinase kinase antagonized fas-associated death domain protein-mediated apoptosis by induced FLICE-inhibitory protein expression. J Exp Med 1998; 188: 1795–1802.

    Article  CAS  Google Scholar 

  32. Panka DJ, Mano T, Suhara T, Walsh K, Mier JW . Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J Biol Chem 2001; 276: 6893–6896.

    Article  CAS  Google Scholar 

  33. Kazama H, Yonehara S . Oncogenic K-Ras and basic fibroblast growth factor prevent Fas-mediated apoptosis in fibroblasts through activation of mitogen-activated protein kinase. J Cell Biol 2000; 148: 557–566.

    Article  CAS  Google Scholar 

  34. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J . NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 2001; 21: 5299–5305.

    Article  CAS  Google Scholar 

  35. Wang CY, Guttridge DC, Mayo MW, Baldwin ASJ . NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 1999; 19: 5923–5929.

    Article  CAS  Google Scholar 

  36. Sevilla L, Zaldumbide A, Pognonec P, Boulukos KE . Transcriptional regulation of the bcl-x gene encoding the anti-apoptotic Bcl-xL protein by Ets, Rel/NFkappaB, STAT and AP1 transcription factor families. Histol Histopathol 2001; 16: 595–601.

    CAS  PubMed  Google Scholar 

  37. Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G . NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci USA 1999; 96: 9136–9141.

    Article  CAS  Google Scholar 

  38. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000; 164: 2200–2206.

    Article  CAS  Google Scholar 

  39. Dorado B, Portoles P, Ballester S . NF-kappaB in Th2 cells: delayed and long-lasting induction through the TCR complex. Eur J Immunol 1998; 28: 2234–2244.

    Article  CAS  Google Scholar 

  40. Kahn-Perles B, Lipcey C, Lecine P, Olive D, Imbert J . Temporal and subunit-specific modulations of the Rel/NF-kappaB transcription factors through CD28 costimulation. J Biol Chem 1997; 272: 21774–21783.

    Article  CAS  Google Scholar 

  41. Zhang XH, Li L, Choe J, Krajewski S, Reed JC, Thompson C et al. Up-regulation of Bcl-xL expression protects CD40-activated human B cells from Fas-mediated apoptosis. Cell Immunol 1996; 173: 149–154.

    Article  CAS  Google Scholar 

  42. Ishida T, Kobayashi N, Tojo T, Ishida S, Yamamoto T, Inoue J . CD40 signaling-mediated induction of Bcl-XL, Cdk4, and Cdk6. Implication of their cooperation in selective B cell growth. J Immunol 1995; 155: 5527–5535.

    CAS  PubMed  Google Scholar 

  43. Giancotti FG, Ruoslahti E . Integrin signaling. Science 1999; 285: 1028–1032.

    Article  CAS  Google Scholar 

  44. Schlaepfer DD, Hauck CR, Sieg DJ . Signaling through focal adhesion kinase. Prog Biophys Mol Biol 1999; 71: 435–478.

    Article  CAS  Google Scholar 

  45. Khwaja A, Rodriguez VP, Wennstrom S, Warne PH, Downward J . Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 1997; 16: 2783–2793.

    Article  CAS  Google Scholar 

  46. Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Obberghen-Schilling E . The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell 2000; 11: 1103–1112.

    Article  CAS  Google Scholar 

  47. Chow SC, Orrenius S . Rapid cytoskeleton modification in thymocytes induced by the immunotoxicant tributyltin. Toxicol Appl Pharmacol 1994; 127: 19–26.

    Article  CAS  Google Scholar 

  48. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8: 1145–1152.

    Article  CAS  Google Scholar 

  49. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002; 8: 1153–1160.

    Article  CAS  Google Scholar 

  50. Medema RH, Kops GJ, Bos JL, Burgering BM . AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000; 404: 782–787.

    Article  CAS  Google Scholar 

  51. Ahmed NN, Grimes HL, Bellacosa A, Chan TO, Tsichlis PN . Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci USA 1997; 94: 3627–3632.

    Article  CAS  Google Scholar 

  52. Berra E, Diaz-Meco MT, Moscat J . The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J Biol Chem 1998; 273: 10792–10797.

    Article  CAS  Google Scholar 

  53. Gibbs BF, Grabbe J . Inhibitors of PI 3-kinase and MEK kinase differentially affect mediator secretion from immunologically activated human basophils. J Leukocyte Biol 1999; 65: 883–890.

    Article  CAS  Google Scholar 

  54. Lopez-Cabrera M, Munoz E, Blazquez MV, Ursa MA, Santis AG, Sanchez-Madrid F . Transcriptional regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-alpha-responsive elements. J Biol Chem 1995; 270: 21545–21551.

    Article  CAS  Google Scholar 

  55. Romano MF, Lamberti A, Tassone P, Alfinito F, Costantini S, Chiurazzi F et al. Triggering of CD40 antigen inhibits fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood 1998; 92: 990–995.

    CAS  PubMed  Google Scholar 

  56. Ghia P, Granziero L, Chilosi M, Caligaris-Cappio F . Chronic B cell malignancies and bone marrow microenvironment. Semin Cancer Biol 2002; 12: 149–155.

    Article  Google Scholar 

  57. Ghia P, Caligaris-Cappio F . The indispensable role of microenvironment in the natural history of low-grade B-cell neoplasms. Adv Cancer Res 2000; 79: 157–173.

    Article  CAS  Google Scholar 

  58. Foy TM, Aruffo A, Bajorath J, Buhlmann JE, Noelle RJ . Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996; 14: 591–617.

    Article  CAS  Google Scholar 

  59. Bernal A, Pastore RD, Asgary Z, Keller SA, Cesarman E, Liou HC et al. Survival of leukemic B cells promoted by engagement of the antigen receptor. Blood 2001; 98: 3050–3057.

    Article  CAS  Google Scholar 

  60. Chen C, Edelstein LC, Gelinas C . The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 2000; 20: 2687–2695.

    Article  Google Scholar 

  61. Yang YL, Li XM . The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 2000; 10: 169–177.

    Article  CAS  Google Scholar 

  62. Hennino A, Berard M, Krammer PH, Defrance T . FLICE-inhibitory protein is a key regulator of germinal center B cell apoptosis. J Exp Med 2001; 193: 447–458.

    Article  CAS  Google Scholar 

  63. Schmid C, Isaacson PG . Proliferation centres in B-cell malignant lymphoma, lymphocytic (B-CLL): an immunophenotypic study. Histopathology 1994; 24: 445–451.

    Article  CAS  Google Scholar 

  64. Caligaris-Cappio F, Hamblin TJ . B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol 1999; 17: 399–408.

    Article  CAS  Google Scholar 

  65. Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 2000; 403: 103–108.

    Article  CAS  Google Scholar 

  66. Adams J, Palombella VJ, Elliott PJ . Proteasome inhibition: a new strategy in cancer treatment. Invest New Drugs 2000; 18: 109–121.

    Article  CAS  Google Scholar 

  67. Murray RZ, Norbury C . Proteasome inhibitors as anti-cancer agents. Anticancer Drugs 2000; 11: 407–417.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the contribution to the study of B Contreras, I Losada, T Martín, I Martín-Larrauri, and S Rosado from Fundación LAIR; MJ Citores and C Puerta from Hospital Puerta de Hierro; and A Maraver and JF Rodríguez from Centro Nacional de Biotecnología; and Marta Pulido, MD, for editing the manuscript and editorial assistance. This work was supported by Fundación LAIR, Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Pérez-Aciego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuní, S., Pérez-Aciego, P., Pérez-Chacón, G. et al. A sustained activation of PI3K/NF-κB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 18, 1391–1400 (2004). https://doi.org/10.1038/sj.leu.2403398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403398

Keywords

This article is cited by

Search

Quick links