Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Synthetic triterpenoids activate a pathway for apoptosis in AML cells involving downregulation of FLIP and sensitization to TRAIL

Abstract

Acute myelogenous leukemia (AML) remains a deadly disease for most adult patients, due primarily to the emergence of chemoresistant cells. Defects in apoptosis pathways make important contributions to chemoresistance, suggesting a need to restore apoptosis sensitivity or to identify alternative pathways for apoptosis induction. Triterpenoids represent a class of naturally occurring and synthetic compounds with demonstrated antitumor activity, including 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and its methyl ester (CDDO-m). We explored the effects of CDDO and CDDO-m in vitro on established AML cell lines (HL-60, U937, AML-2) and on freshly isolated AML blasts. CDDO and CDDO-m reduced the viability of all AML cell lines tested in a dose-dependent manner, with effective doses for killing 50% of cells (ED50) within 48 h of 1 and 0.5 μ M, respectively. CDDO or CDDO-m also induced substantial increases in cell death in five out of 10 samples of primary AML blasts. Cell death induced by CDDO and CDDO-m was attributed to apoptosis, based on characteristic cell morphology and evidence of caspase activation. Immunoblot analysis demonstrated proteolytic processing of caspase-3, -7, and -8, but not caspase-9, suggesting the involvement of the ‘extrinsic’ pathway, linked to apoptosis induction by TNF-family death receptors. Accordingly, CDDO and CDDO-m induced concentration-dependent reductions in the levels of FLIP protein, an endogenous antagonist of caspase-8, without altering the levels of several other apoptosis-relevant proteins. Reductions in FLIP were rapid, detectable within 3 h after exposure of AML cell lines to CDDO or CDDO-m. CDDO and CDDO-m also sensitized two of four leukemia lines to TRAIL, a TNF-family death ligand. The findings suggest that synthetic triterpenoids warrant further investigation in the treatment of AML, alone or in combination with TRAIL or other immune-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Reed JC . Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 1997; 34: 9–19.

    CAS  Google Scholar 

  2. Makin G, Hickmann JA . Apoptosis and cancer chemotherapy. Cell Tissue Res 2000; 301: 143.

    Article  CAS  Google Scholar 

  3. Honda T, Rounds BV, Gribble GW, Suh N, Wang Y, Sporn MB . Design and synthesis of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, a novel and highly active inhibitor of nitric oxide production in mouse macrophages. Bioorg Med Chem Lett 1998; 8: 2711–2714.

    Article  CAS  Google Scholar 

  4. Suh N, Honda T, Finlay HJ, Barchowsky A, Williams C, Benoit NE et al. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res 1998; 58: 717–723.

    CAS  PubMed  Google Scholar 

  5. Suh N, Wang Y, Honda T, Gribble GW, Dmitrovsky E, Hickey WF et al. A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res 1999; 59: 336–341.

    CAS  PubMed  Google Scholar 

  6. Ito Y, Pandey P, Place A, Sporn MB, Gribble GW, Honda T et al. The novel triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid induces apoptosis of human myeloid leukemia cells by a caspase-8-dependent mechanism. Cell Growth Differ 2000; 11: 261–267.

    CAS  PubMed  Google Scholar 

  7. Salvesen GS . Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 2002; 9: 3–5.

    Article  Google Scholar 

  8. Tschopp J, Irmler M, Thome M . Inhibition of Fas death signals by FLIPs. Curr Opin Immunol 1998; 10: 552–558.

    Article  CAS  Google Scholar 

  9. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11: 255–260.

    Article  CAS  Google Scholar 

  10. Schimmer A, Hedley DW, Penn LZ, Minden MD . Receptor- and mitochondrial-mediated apoptosis in acute leukemia: a translational view. Blood 2001; 98: 3541–3553.

    Article  CAS  Google Scholar 

  11. Andreeff M, Tabe Y, Milella M, Carter BZ, Tsa T, McQueen T et al. The role of apoptosis and cell signaling in myeloid leukemia. Cytometry Res 2002; 12: 20–21.

    Google Scholar 

  12. Green DR, Reed JC . Mitochondria and apoptosis. Science 1998; 281: 1309–1312.

    Article  CAS  Google Scholar 

  13. Reed J . Dysregulation of apoptosis in cancer. J Clin Oncol 1999; 17: 2941.

    Article  CAS  Google Scholar 

  14. Wallach D, Kovalenko AV, Varfolomeev EE, Boldin MP . Death-inducing functions of ligands of the tumor necrosis factor family: a Sanhedrin verdict. Curr Opin Immunol 1998; 10: 279–288.

    Article  CAS  Google Scholar 

  15. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. CELL 1996; 85: 817–827.

    Article  CAS  Google Scholar 

  16. Boldin MP, Goncharov TM, Goltsev YV, Wallach D . Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996; 85: 803–815.

    Article  CAS  Google Scholar 

  17. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  CAS  Google Scholar 

  18. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998; 94: 339–352.

    Article  CAS  Google Scholar 

  19. Place AE, Suh N, Williams CR, Risingsong R, Honda T, Honda Y, Gribble GW, Leesnitzer LM, Stimmel JB, Willson TM, Rosen E and Sporn MB, The novel synthetic triterpenoid, CDDO-Imidazolide, inhibits inflammatory response and tumour growth in vivo. Clin. Cancer Res 2003; 9: 2798–2806.

    CAS  PubMed  Google Scholar 

  20. Ito Y, Pandey P, Sporn MB, Datta R, Kharbanda S, Kufe D . The novel triterpenoid CDDO induced apoptosis and differentiation of human osteosarcoma cells by a caspase-8 dependent mechanism. Mol Pharmacol 2001; 59: 1094–1099.

    Article  CAS  Google Scholar 

  21. Konopleva M, Tsao T, Ruvolo P, Stiouf I, Estrov Z, Leysath CE et al. Novel triterpenoid CDDO-Me is a potent inducer of apoptosis and differentiation in acute myelogenous leukemia. Blood 2002; 99: 326–335.

    Article  CAS  Google Scholar 

  22. Kim Y, Suh N, Sporn M, Reed JC . An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 2002; 277: 22320–22329.

    Article  CAS  Google Scholar 

  23. Pedersen IM, Kitada S, Schimmer A, Kim Y, Zapata JM, Charboneau L et al. The triterpenoid CDDO induces apoptosis in refractory CLL B-cells. Blood 2002; 100: 2965–2972.

    Article  CAS  Google Scholar 

  24. Chu P, Deforce D, Pedersen IM, Kim Y, Kitada S, Reed JC et al. Latent sensitivity to Fas-mediated apoptosis after CD40 ligation may explain activity of CD154 gene therapy in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 2854–3859.

    Article  Google Scholar 

  25. Armstrong RC, Aja T, Xiang J, Gaur S, Krebs JF, Hoang K et al. Fas-induced activation of the cell death related protease CPP32 is inhibited by Bcl-2 and by ICE family protease inhibitors. J Biol Chem 1996; 271: 16850–16855.

    Article  CAS  Google Scholar 

  26. Rayappa C, McCulloch EA . A cell culture model for the treatment of acute myeloblastic leukemia with fludarabine and cytosine arabinoside. Leukemia 1993; 7: 992–999.

    CAS  PubMed  Google Scholar 

  27. Hu Z-B, Minden MD, McCulloch EA . Regulation of the synthesis of bcl-2 protein by growth factors. Leukemia 1996; 10: 1925–1929.

    CAS  PubMed  Google Scholar 

  28. Cheson BD, Cassileth PA, Head DR, Schiffer CA, Bennett JM, Bloomfield CD et al. Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 1990; 8: 813–819.

    Article  CAS  Google Scholar 

  29. Schimmer AD, Munk-Pedersen I, Kitada S, Demiralp E, Minden MD, Pinto R et al. Functional blocks in caspase activation pathways are common in leukemia and predict patient-response to induction chemotherapy. Cancer Res 2003; 63: 1242–1248.

    CAS  PubMed  Google Scholar 

  30. Krajewski S, Zapata JM, Reed JC . Detection of multiple antigens on Western blots. Anal Biochem 1996; 236: 221–228.

    Article  CAS  Google Scholar 

  31. Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K et al. Immunohistochemical analysis of Bcl-2, Bax, Bcl-X and Mcl-1 expression in prostate cancers. Am J Pathol 1996; 148: 1567–1576.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stegh AH, Barnhart BC, Volkland J, Ke N, Reed J, Peter ME . Inactivation of caspase-8 on mitochondria of Bcl-xL expressing MCF7-Fas cells. J Biol Chem 2002; 277: 4351–4360.

    Article  CAS  Google Scholar 

  33. Whitacre CM, Berger NA . Factors affecting topotecan-induced programmed cell death: adhesion protects cells from apoptosis and impairs cleavage of poly(ADP-ribose)polymerase. Cancer Res 1997; 57: 2157–2163.

    CAS  PubMed  Google Scholar 

  34. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J Biol Chem 1997; 272: 17907–17911.

    Article  CAS  Google Scholar 

  35. Reed JC . Apoptosis-targeted therapies for cancer. Cancer Cell 2003; 3: 17–22.

    Article  CAS  Google Scholar 

  36. Bortul R, Tazzari PL, Cappellini A, Tabellini G, Billi AM, Bareggi R et al. Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-kappaB activation and cFLIP(L) up-regulation. Leukemia 2003; 17: 379–389.

    Article  CAS  Google Scholar 

  37. Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA, Peschon J, Chen YH . Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL(−/−) mice. Nat Immunol 2003; 4: 255–261.

    Article  CAS  Google Scholar 

  38. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ . Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 2002; 168: 1356–1361.

    Article  CAS  Google Scholar 

  39. Leith CP, Kopecky KJ, Godwin J, McConnell T, Slovak ML, Chen IM et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group Study. Blood 1997; 89: 3323–3329.

    CAS  Google Scholar 

  40. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohammed A et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: A Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000; 96: 4075–4083.

    CAS  PubMed  Google Scholar 

  41. Bassan R, Lerede T, Di Bona E, Rambaldi A, Rossi G, Pogliani E et al. Induction–consolidation with idarubicin-containing regimen, unpurged marrow autograft, and post-graft chemotherapy in adult acute lymphoblastic leukaemia. Br J Hematol 1999; 104: 755–762.

    Article  CAS  Google Scholar 

  42. Wang Y, Porter WW, Suh N, Honda T, Gribble GW, Leesnitzer LM et al. A synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), is a ligand for the peroxisome proliferator-activated receptor γ. Mol Endocrinol 2000; 14: 1550–1556.

    CAS  PubMed  Google Scholar 

  43. Ichikawa K, Liu W, Wang Z, Liu D, Zhao L, Ohtsuka T et al. Tumoricidal activity in the absence of hepatocyte cytoxicity of a novel anti-human DR5 monoclonal antibody. Nat Med 2001; 7: 954–960.

    Article  CAS  Google Scholar 

  44. Wuchter C, Krappmann D, Cai Z, Ruppert V, Scheidereit C, Dorken B et al. In vitro susceptibility to TRAIL-induced apoptosis of acute leukemia cells in the context of TRAIL receptor gene expression and constitutive NF-kappaB activity. Leukemia 2001; 15: 921–928.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, WS., Kim, Y., Schimmer, A. et al. Synthetic triterpenoids activate a pathway for apoptosis in AML cells involving downregulation of FLIP and sensitization to TRAIL. Leukemia 17, 2122–2129 (2003). https://doi.org/10.1038/sj.leu.2403112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403112

Keywords

This article is cited by

Search

Quick links