Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Imaging technologies and basic considerations for welfare of laboratory rodents

Abstract

Imaging technologies are regularly used in biomedical research to study processes in living animals in a noninvasive manner. But imaging procedures can affect animal physiology, and the need to anesthetize animals for imaging entails potential health risks. In addition, certain imaging modalities require the use of ionizing radiation or the administration of contrast agents or imaging biomarkers, which also have consequences for animal physiology. Finally, procedures associated with imaging, such as animal preparation (e.g., fasting, premedication) and blood sampling, can also affect physiology and animal welfare. Here, the authors review the imaging modalities commonly used for rodents in biomedical research and their associated considerations for animal welfare.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging modalities.

Similar content being viewed by others

References

  1. Ram, R., Mickelsen, D.M., Theodoropoulos, C. & Blaxall, B.C. New approaches in small animal echocardiography: imaging the sounds of silence. Am. J. Physiol. Heart Circ. Physiol. 301, H1765–H1780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Waerzeggersa, Y., Monfareda, P., Viela, T., Winkelera, A. & Jacobs, A. Mouse models in neurological disorders: applications of non-invasive imaging. Biochim. Biophys. Acta 1802, 819–839 (2010).

    Article  Google Scholar 

  3. Schambach, S.J., Bag, S., Schilling, L., Groden, C. & Brockmann, M.A. Application of micro-CT in small animal imaging. Methods 50, 2–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. de Jong, M., Essers, J. & van Weerden, W.M. Imaging preclinical tumour models: improving translational power. Nat. Rev. Cancer 14, 481–493 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Kooreman, N.G., Ransohoff, J.D. & Wu, J.C. Tracking gene and cell fate for therapeutic gain. Nat. Mater. 13, 106–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matthews, P.M. et al. Technologies: preclinical imaging for drug development. Drug Discov. Today. Technol. 10, e343–e350 (2013).

    Article  PubMed  Google Scholar 

  7. Clark, D.P. & Badea, C.T. Micro-CT of rodents: state-of-the-art and future perspectives. Phys. Med. 30, 619–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bouxsein, M.L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).

    Article  PubMed  Google Scholar 

  9. Hallouard, F., Anton, N., Choquet, P., Constantinesco, A. & Vandamme, T. Iodinated blood pool contrast media for preclinical X-ray imaging applications—a review. Biomaterials 31, 6249–6268 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Bartling, S.H., Kuntz, J. & Semmler, W. Gating in small-animal cardio-thoracic CT. Methods 50, 42–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Driehuys, B. et al. Small animal imaging with magnetic resonance microscope. ILAR J. 49, 35–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Albanese, C. et al. Preclinical magnetic resonance imaging and systems biology in cancer research: current applications and challenges. Am. J. Pathol. 182, 312–318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Botnar, R.M. & Makowski, M.R. Cardiovascular magnetic resonance imaging in small animals. Prog. Mol. Biol. Transl. Sci. 105, 227–261 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, M.R. et al. Preclinical (1) H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis 4, 1787–1804 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Chao, T.H., Chen, J.H. & Yen, C.T. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats. PLoS ONE 9, e97305 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baltes, C., Radzwill, N., Bosshard, S., Marek, D. & Rudin, M. Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed. 22, 834–842 (2009).

    Article  PubMed  Google Scholar 

  17. Uhrig, L., Ciobanu, L., Djemai, B., Le Bihan, D. & Jarraya, B. Sedation agents differentially modulate cortical and subcortical blood oxygenation: evidence from ultra-high field MRI at 17.2 T. PLoS ONE 9, e100323 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schmid, A. et al. Feasibility of sequential PET/MRI using a state-of-the-art small animal PET and a 1 T benchtop MRI. Mol. Imaging Biol. 15, 155–165 (2013).

    Article  PubMed  Google Scholar 

  19. Riemann, B., Schäfers, K.P., Schober, O. & Schäfers, M. Small animal PET in preclinical studies: opportunities and challenges. Q. J. Nucl. Med. Mol. Imaging 52, 215–221 (2008).

    CAS  PubMed  Google Scholar 

  20. Magota, K. et al. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur. J. Nucl. Med. Mol. Imaging 38, 742–752 (2011).

    Article  PubMed  Google Scholar 

  21. Khalil, M.M., Tremoleda, J.L., Bayomy, T.B. & Gsell, W. Molecular SPECT imaging: an overview. Int. J. Mol. Imaging 2011, 796025 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Franc, B.L., Acton, P.D., Mari, C. & Hasegawa, B.H. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J. Nucl. Med. 49, 1651–1663 (2008).

    Article  PubMed  Google Scholar 

  23. Keyaerts, M., Caveliers, V. & Lahoutte, T. Bioluminescence imaging: looking beyond the light. Trends Mol. Med. 18, 164–172 (2012).

    Article  PubMed  Google Scholar 

  24. Zelmer, A. & Ward, T.H. Noninvasive fluorescence imaging of small animals. J. Microsc. 252, 8–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Frangioni, J.V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Leblond, F., Davis, S.C., Valdes, P.A. & Pogue, B.W. Pre-Clinical whole-body fluorescence imaging: review of instruments, methods and applications. J. Photochem. Photobiol. B. Biol. 98, 77–94 (2010).

    Article  CAS  Google Scholar 

  27. Conway, J.R.W., Carragher, N.O. & Timpson, P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat. Rev. Cancer 14, 314–328 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Foster, F.S., Pavlin, C.J., Harasiewicz, K.A., Christopher, D.A. & Turnbull, D.H. Ultrasound biomicroscope for mouse imaging. Ultrasound Med. Biol. 26, 1–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Moran, C.M., Thomson, A.J., Rog-Zielinska, E. & Gray, G.A. High-resolution echocardiography in the assessment of cardiac physiology and disease in preclinical models. Exp. Physiol. 98, 629–644 (2013).

    Article  PubMed  Google Scholar 

  30. Wang, L.V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lovell, D.P. Variation in pentobarbitone sleeping time in mice. 1. Strain and sex differences. Lab. Anim. 20, 85–90 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. van Bogaert, M.J. et al. Mouse strain differences in autonomic responses to stress. Genes Brain Behav. 5, 139–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Curry, B.B. III. Animal models used in identifying gender-related differences. Int. J. Toxicol. 20, 153–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Vermeulen, J.K., De Vries, A., Schlingmann, F. & Remie, R. Food deprivation: common sense or nonsense? Anim. Technol. 48, 45–54 (1997).

    Google Scholar 

  35. Hedrich, H. (ed.) The Laboratory Mouse: The Handbook of Experimental Animals (Elsevier, San Diego, 2004).

    Google Scholar 

  36. Troy, T., Jekic-McMullen, D., Sambucetti, L. & Rice, B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 3, 9–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. MacLaurin, S.A. et al. Reduction of skin and food auto fluorescence in different mouse strains through diet changes. 2006. Poster, Society for Molecular Imaging, Annual Meeting, Hawaii.

  38. Diehl, K.H. et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 21, 15–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Hildebrandt, I.J., Su, H. & Weber, W.A. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J. 49, 17–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Moadel, R.M. et al. Positherapy: targeted nuclear therapy of breast cancer with 18F-2-deoxy-2-fluoro-D-glucose. Cancer Res. 65, 698–702 (2005).

    CAS  PubMed  Google Scholar 

  41. Taschereau, R., Chow, P.L. & Chatziioannou, A.F. Montecarlo simulations of dose from micro CT imaging procedures in a realistic mouse phantom. Med. Phys. 33, 216–224 (2006).

    Article  PubMed  Google Scholar 

  42. Flecknell, P.A. Laboratory Animal Anaesthesia 3rd edn. (Academic, San Diego, 2009).

    Google Scholar 

  43. Wolfensohn, S. & Lloyd, M. (eds.) Anaesthesia of laboratory animals in Handbook of Laboratory Animal Management and Welfare 3rd edn. (Blackwell, Ames, IA, 2003).

    Chapter  Google Scholar 

  44. Johnson, R.A., Striler, E., Sawyer, D. & Brunson, D. Comparison of isoflurane with sevoflurane for anaesthesia induction and recovery in adult dogs. Am. J. Vet. Res. 59, 478–481 (1998).

    CAS  PubMed  Google Scholar 

  45. Cesarovic, N. et al. Isoflurane and sevoflurane provide equally effective anaesthesia in laboratory mice. Lab. Anim. 44, 329–336 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Wagner, A.E. & Brodbelt, D.C. Arterial blood pressure monitoring in anesthetized animals. J. Am. Vet. Med. Assoc. 210, 1279–1285 (1997).

    CAS  PubMed  Google Scholar 

  47. Thal, S.C. & Plesnila, N. Non-invasive intraoperative monitoring of blood pressure and arterial pCO2 during surgical anesthesia in mice. Neurosci Meth. 159, 261–267 (2007).

    Article  Google Scholar 

  48. Makowska, I.J. & Weary, D.M. Rat aversion to induction with inhalant anaesthetics. Appl. Anim. Behav. Sci. 119, 229–235 (2009).

    Article  Google Scholar 

  49. Hauber, H.P., Karp, D., Goldmann, T., Vollmer, E. & Zabel, P. Effect of low tidal volume ventilation on lung function and inflammation in Mice. BMC Pulm. Med. 10, 21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pecchiari, M. et al. Effects of various modes of mechanical ventilation in normal rats. Anesthesiology 120, 943–950 (2014).

    Article  PubMed  Google Scholar 

  51. Colby, L.A. & Morenko, B.J. Clinical considerations in rodent bioimaging. Comp. Med. 54, 623–630 (2004).

    CAS  PubMed  Google Scholar 

  52. Cherry, S.R. Multimodality imaging: Beyond PET/CT and SPECT/CT. Semin. Nucl. Med. 39, 348–353 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wehrl, H.F. et al. Preclinical and translational PET/MR imaging. J. Nucl. Med. 55 (suppl. 2), 11S–18S (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Guo, X. et al. A combined fluorescence and microcomputed tomography system for small animal imaging. IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).

    Article  PubMed  Google Scholar 

  55. Nahrendorf, M. et al. Hybrid PET-optical imaging using targeted probes. Proc. Natl. Acad. Sci. USA 107, 7910–7915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi L. Tremoleda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tremoleda, J., Sosabowski, J. Imaging technologies and basic considerations for welfare of laboratory rodents. Lab Anim 44, 97–105 (2015). https://doi.org/10.1038/laban.665

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.665

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing