Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Effects of experimental housing conditions on recovery of laboratory mice

Abstract

The beneficial effects of environment and social support during disease recovery in humans are widely accepted. Because laboratory mice are social animals and are highly motivated to interact with each other and with their environment, it is very likely that environmental and social factors are also beneficial to their recovery from experimental interventions or spontaneous diseases. The beneficial effects of enriched environments have been particularly well analyzed in the field of brain disorders, but several studies suggest that positive social contact and a complex and familiar environment may also support recovery from injury, from invasive procedures such as surgery or from spontaneously occurring diseases. The author reviews relevant publications on the effects of environment and social housing on recovery from disease or surgery in laboratory mice and other rodents. She concludes that in addition to promoting animal welfare, provision of optimal experimental housing conditions might also contribute to the clinical relevance of preclinical animal models by more closely simulating the environmental and social characteristics of disease recovery in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ulrich, R.S. View through a window may influence recovery from surgery. Science 224, 420–421 (1984).

    Article  CAS  Google Scholar 

  2. House, J.S. Social isolation kills, but how and why? Psychosom. Med. 63, 273–274 (2001).

    Article  CAS  Google Scholar 

  3. Flor, H., Fydrich, T. & Turk, D.C. Efficacy of multidisciplinary pain treatment centers: a meta-analytic review. Pain 49, 221–230 (1992).

    Article  CAS  Google Scholar 

  4. de Wied, M. & Verbaten, M.N. Affective pictures processing, attention, and pain tolerance. Pain 90, 163–172 (2001).

    Article  CAS  Google Scholar 

  5. Bonifazi, M. et al. Changes in salivary cortisol and corticosteroid receptor-alpha mRNA expression following a 3-week multidisciplinary treatment program in patients with fibromyalgia. Psychoneuroendocrinology 31, 1076–1086 (2006).

    Article  CAS  Google Scholar 

  6. Olsson, I.A.S. & Westlund, K. More than numbers matter: The effect of social factors on behaviour and welfare of laboratory rodents and non-human primates. Appl. Anim. Behav. Sci. 103, 229–254 (2007).

    Article  Google Scholar 

  7. Meijer, M.K. et al. The effect of routine experimental procedures on physiological parameters in mice kept under different husbandry conditions. Anim. Welf. 15, 31–38 (2006).

    CAS  Google Scholar 

  8. Bartolomucci, A. et al. Individual housing induces altered immunoendocrine responses to psychological stress in male mice. Psychoneuroendocrinology 28, 540–558 (2003).

    Article  CAS  Google Scholar 

  9. Rosenzweig, M.R. & Bennett, E.L. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav. Brain Res. 78, 57–65 (1996).

    Article  CAS  Google Scholar 

  10. Nithianantharajah, J. & Hannan, A.J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7, 697–709 (2006).

    Article  CAS  Google Scholar 

  11. Xie, H. et al. Enrichment-induced exercise to quantify the effect of different housing conditions: a tool to standardize enriched environment protocols. Behav. Brain Res. 249, 81–89 (2013).

    Article  Google Scholar 

  12. Girbovan, C. & Plamondon, H. Environmental enrichment in female rodents: considerations in the effects on behavior and biochemical markers. Behav. Brain Res. 253, 178–190 (2013).

    Article  CAS  Google Scholar 

  13. Olsson, I.A. & Dahlborn, K. Improving housing conditions for laboratory mice: a review of ″environmental enrichment″. Lab. Anim. 36, 243–270 (2002).

    Article  CAS  Google Scholar 

  14. Toth, L.A., Kregel, K., Leon, L. & Musch, T.I. Environmental enrichment of laboratory rodents: the answer depends on the question. Comp. Med. 61, 314–321 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, A.L. & Corrow, D.J. Modifications to husbandry and housing conditions of laboratory rodents for improved wellbeing. ILAR J. 46, 140–147 (2005).

    Article  CAS  Google Scholar 

  16. Pang, T.Y. & Hannan, A.J. Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology 64, 515–528 (2013).

    Article  CAS  Google Scholar 

  17. Begenisic, T. et al. Environmental enrichment decreases GABAergic inhibition and improves cognitive abilities, synaptic plasticity, and visual functions in a mouse model of Down syndrome. Front. Cell. Neurosci. 5, 29 (2011).

    Article  CAS  Google Scholar 

  18. Restivo, L. et al. Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc. Natl. Acad. Sci. USA 102, 11557–11562 (2005).

    Article  CAS  Google Scholar 

  19. Dhanushkodi, A. & Shetty, A.K. Is exposure to enriched environment beneficial for functional post-lesional recovery in temporal lobe epilepsy? Neurosci. Biobehav. Rev. 32, 657–674 (2008).

    Article  Google Scholar 

  20. Goldberg, N.R., Haack, A.K. & Meshul, C.K. Enriched environment promotes similar neuronal and behavioral recovery in a young and aged mouse model of Parkinson′s disease. Neuroscience 172, 443–452 (2011).

    Article  CAS  Google Scholar 

  21. Faherty, C.J., Raviie Shepherd, K., Herasimtschuk, A. & Smeyne, R.J. Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res. Mol. Brain Res. 134, 170–179 (2005).

    Article  CAS  Google Scholar 

  22. Passineau, M.J., Green, E.J. & Dietrich, W.D. Therapeutic effects of environmental enrichment on cognitive function and tissue integrity following severe traumatic brain injury in rats. Exp. Neurol. 168, 373–384 (2001).

    Article  CAS  Google Scholar 

  23. Gobbo, O.L. & O'Mara, S.M. Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav. Brain Res. 152, 231–241 (2004).

    Article  CAS  Google Scholar 

  24. Biernaskie, J. & Corbett, D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 21, 5272–5280 (2001).

    Article  CAS  Google Scholar 

  25. Belayev, A. et al. Enriched environment delays the onset of hippocampal damage after global cerebral ischemia in rats. Brain Res. 964, 121–127 (2003).

    Article  CAS  Google Scholar 

  26. Seo, J.H. et al. Environmental enrichment synergistically improves functional recovery by transplanted adipose stem cells in chronic hypoxic-ischemic brain injury. Cell Transplant. 22, 1553–1568 (2013).

    Article  Google Scholar 

  27. Kiecolt-Glaser, J.K., McGuire, L., Robles, T.F. & Glaser, R. Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology. Annu. Rev. Psychol. 53, 83–107 (2002).

    Article  Google Scholar 

  28. Broadbent, E. & Koschwanez, H.E. The psychology of wound healing. Curr. Opin. Psychiatry 25, 135–140 (2012).

    Article  Google Scholar 

  29. Kingston, S.G. & Hoffman-Goetz, L. Effect of environmental enrichment and housing density on immune system reactivity to acute exercise stress. Physiol. Behav. 60, 145–150 (1996).

    Article  CAS  Google Scholar 

  30. Schloesser, R.J., Lehmann, M., Martinowich, K., Manji, H.K. & Herkenham, M. Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol. Psychiatry 15, 1152–1163 (2010).

    Article  CAS  Google Scholar 

  31. Llorens-Martín, M., Tejeda, G.S. & Trejo, J.L. Antidepressant and proneurogenic influence of environmental enrichment in mice: protective effects vs recovery. Neuropsychopharmacology 36, 2460–2468 (2011).

    Article  Google Scholar 

  32. Hattori, S. et al. Enriched environments influence depression-related behavior in adult mice and the survival of newborn cells in their hippocampi. Behav. Brain Res. 180, 69–76 (2007).

    Article  Google Scholar 

  33. Vitalo, A. et al. Nest making and oxytocin comparably promote wound healing in isolation reared rats. PLoS ONE 4, e5523 (2009).

    Article  Google Scholar 

  34. Tall, J.M. Housing supplementation decreases the magnitude of inflammation-induced nociception in rats. Behav. Brain Res. 197, 230–233 (2009).

    Article  Google Scholar 

  35. Gabriel, A.F., Marcus, M.A., Honig, W.M., Helgers, N. & Joosten, E.A. Environmental housing affects the duration of mechanical allodynia and the spinal astroglial activation in a rat model of chronic inflammatory pain. Brain Res. 1276, 83–90 (2009).

    Article  CAS  Google Scholar 

  36. Arndt, S.S. et al. Individual housing of mice–impact on behaviour and stress responses. Physiol. Behav. 97, 385–393 (2009).

    Article  CAS  Google Scholar 

  37. Bartolomucci, A., Parmigiani, S., Gioiosa, L., Ceresini, G. & Palanza, P. Effects of housing social context on emotional behaviour and physiological responses in female mice. Scand. J. Lab. Anim. Sci. 36, 87–95 (2009).

    CAS  Google Scholar 

  38. D′Arbe, M., Einstein, R. & Lavidis, N.A. Stressful animal housing conditions and their potential effect on sympathetic neurotransmission in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1422–R1428 (2002).

    Article  Google Scholar 

  39. Späni, D., Arras, M., Konig, B. & Rulicke, T. Higher heart rate of laboratory mice housed individually vs in pairs. Lab. Anim. 37, 54–62 (2003).

    Article  Google Scholar 

  40. Ferrari, P.F., Palanza, P., Parmigiani, S. & Rodgers, R.J. Interindividual variability in Swiss male mice: relationship between social factors, aggression, and anxiety. Physiol. Behav. 63, 821–827 (1998).

    Article  CAS  Google Scholar 

  41. Voikar, V., Polus, A., Vasar, E. & Rauvala, H. Long-term individual housing in C57BL/6J and DBA/2 mice: assessment of behavioral consequences. Genes Brain Behav. 4, 240–252 (2005).

    Article  CAS  Google Scholar 

  42. Kwak, C., Lee, S.H. & Kaang, B.K. Social isolation selectively increases anxiety in mice without affecting depression-like behavior. Korean J. Physiol. Pharmacol. 13, 357–360 (2009).

    Article  Google Scholar 

  43. Stub, C., Ritskes-Hoitinga, M., Olsen, A.K., Krohn, T.C. & Hansen, A.K. Fluctuating asymmetry in relation to single housing versus group housing in three inbred mouse strains. Scand. J. Lab. Anim. Sci. 31, 245–249 (2004).

    CAS  Google Scholar 

  44. Andrade, C.S. & Guimarães, F.S. Anxiolytic-like effect of group housing on stress-induced behavior in rats. Depress. Anxiety 18, 149–152 (2003).

    Article  Google Scholar 

  45. Uchino, B.N., Cacioppo, J.T. & Kiecolt-Glaser, J.K. The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychol. Bull. 119, 488–531 (1996).

    Article  CAS  Google Scholar 

  46. Karelina, K. & DeVries, A.C. Modeling social influences on human health. Psychosom. Med. 73, 67–74 (2011).

    Article  Google Scholar 

  47. DeVries, A.C., Craft, T.K., Glasper, E.R., Neigh, G.N. & Alexander, J.K. 2006 Curt P. Richter award winner: Social influences on stress responses and health. Psychoneuroendocrinology 32, 587–603 (2007).

    Article  Google Scholar 

  48. Weil, Z.M. et al. Social isolation potentiates cell death and inflammatory responses after global ischemia. Mol. Psychiatry 13, 913–915 (2008).

    Article  CAS  Google Scholar 

  49. Venna, V.R., Xu, Y., Doran, S.J., Patrizz, A. & McCullough, L.D. Social interaction plays a critical role in neurogenesis and recovery after stroke. Transl. Psychiatry 4, e351 (2014).

    Article  CAS  Google Scholar 

  50. Karelina, K. et al. Social isolation alters neuroinflammatory response to stroke. Proc. Natl. Acad. Sci. USA 106, 5895–5900 (2009).

    Article  CAS  Google Scholar 

  51. Karelina, K., Norman, G.J., Zhang, N. & DeVries, A.C. Social contact influences histological and behavioral outcomes following cerebral ischemia. Exp. Neurol. 220, 276–282 (2009).

    Article  Google Scholar 

  52. Craft, T.K. et al. Social interaction improves experimental stroke outcome. Stroke 36, 2006–2011 (2005).

    Article  Google Scholar 

  53. Nakagawa-Toyama, Y., Zhang, S. & Krieger, M. Dietary manipulation and social isolation alter disease progression in a murine model of coronary heart disease. PLoS ONE 7, e47965 (2012).

    Article  Google Scholar 

  54. Palermo-Neto, J., Fonseca, E.S., Quinteiro-Filho, W.M., Correia, C.S. & Sakai, M. Effects of individual housing on behavior and resistance to Ehrlich tumor growth in mice. Physiol. Behav. 95, 435–440 (2008).

    Article  CAS  Google Scholar 

  55. Larauche, M., Gourcerol, G., Million, M., Adelson, D.W. & Tache, Y. Repeated psychological stress-induced alterations of visceral sensitivity and colonic motor functions in mice: influence of surgery and postoperative single housing on visceromotor responses. Stress 13, 343–354 (2010).

    Article  Google Scholar 

  56. Pham, T.M. et al. Housing environment influences the need for pain relief during post-operative recovery in mice. Physiol. Behav. 99, 663–668 (2010).

    Article  CAS  Google Scholar 

  57. Van Loo, P.L. et al. Impact of ′living apart together′ on postoperative recovery of mice compared with social and individual housing. Lab. Anim. 41, 441–455 (2007).

    Article  CAS  Google Scholar 

  58. Jirkof, P., Cesarovic, N., Rettich, A., Fleischmann, T. & Arras, M. Individual housing of female mice: influence on postsurgical behaviour and recovery. Lab. Anim. 46, 325–334 (2012).

    Article  CAS  Google Scholar 

  59. Detillion, C.E., Craft, T.K., Glasper, E.R., Prendergast, B.J. & DeVries, A.C. Social facilitation of wound healing. Psychoneuroendocrinology 29, 1004–1011 (2004).

    Article  CAS  Google Scholar 

  60. Levine, J.B. et al. Isolation rearing impairs wound healing and is associated with increased locomotion and decreased immediate early gene expression in the medial prefrontal cortex of juvenile rats. Neuroscience 151, 589–603 (2008).

    Article  CAS  Google Scholar 

  61. Glasper, E.R. & Devries, A.C. Social structure influences effects of pair-housing on wound healing. Brain Behav. Immun. 19, 61–68 (2005).

    Article  Google Scholar 

  62. Van Loo, P.L.P., Kruitwagen, C.L.J.J., Van Zutphen, L.F.M., Koolhaas, J.M. & Baumans, V. Modulation of aggression in male mice: Influence of cage cleaning regime and scent marks. Anim. Welf. 9, 281–295 (2000).

    Google Scholar 

  63. Fitchett, A.E., Barnard, C.J. & Cassaday, H.J. There′s no place like home: cage odours and place preference in subordinate CD-1 male mice. Physiol. Behav. 87, 955–962 (2006).

    Article  CAS  Google Scholar 

  64. Hurst, J.L. et al. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634 (2001).

    Article  CAS  Google Scholar 

  65. Gray, S. & Hurst, J.L. The effects of cage cleaning on aggression within groups of male laboratory mice. Anim. Behav. 49, 821–826 (1995).

    Article  Google Scholar 

  66. Brennan, P. How mice make their mark. Nature 414, 590–591 (2001).

    Article  CAS  Google Scholar 

  67. Burn, C.C., Peters, A. & Mason, G.J. Acute effects of cage cleaning at different frequencies on laboratory rat behavior and welfare. Anim. Welf. 15, 161–171 (2006).

    CAS  Google Scholar 

  68. Marques, J.M., Olsson, I.A., Ogren, S.O. & Dahlborn, K. Evaluation of exploration and risk assessment in pre-weaning mice using the novel cage test. Physiol. Behav. 93, 139–147 (2008).

    Article  CAS  Google Scholar 

  69. Pardon, M.C. et al. Social threat and novel cage stress induced sustained extracellular-regulated kinase1/2 (ERK1/2) phosphorylation but differential modulation of brain-derived neurotrophic factor (BDNF) expression in the hippocampus of NMRI mice. Neuroscience 132, 561–574 (2005).

    Article  CAS  Google Scholar 

  70. Misslin, R., Herzog, F., Koch, B. & Ropartz, P. Effects of isolation, handling and novelty on the pituitary–adrenal response in the mouse. Psychoneuroendocrinology 7, 217–221 (1982).

    Article  CAS  Google Scholar 

  71. Tuli, J.S., Smith, J.A. & Morton, D.B. Stress measurements in mice after transportation. Lab. Anim. 29, 132–138 (1995).

    Article  CAS  Google Scholar 

  72. Jirkof, P., Cesarovic, N., Rettich, A. & Arras, M. Housing of female mice in a new environment and its influence on postsurgical behaviour and recovery. Appl. Anim. Behav. Sci. 148, 209–217 (2013).

    Article  Google Scholar 

  73. Schallert, T., Woodlee, M.T. & Fleming, S.M. Experimental focal ischemic injury: behavior-brain interactions and issues of animal handling and housing. ILAR J. 44, 130–143 (2003).

    Article  CAS  Google Scholar 

  74. Reber, S.O. et al. Mucosal immunosuppression and epithelial barrier defects are key events in murine psychosocial stress-induced colitis. Brain Behav. Immun. 25, 1153–1161 (2011).

    Article  CAS  Google Scholar 

  75. Haemisch, A. & Gärtner, K. Effects of cage enrichment on territorial aggression and stress physiology in male laboratory mice. Acta Physiol. Scand. Suppl. 640, 73–76 (1997).

    CAS  PubMed  Google Scholar 

  76. Van Loo, P.L., Van Zutphen, L.F. & Baumans, V. Male management: Coping with aggression problems in male laboratory mice. Lab. Anim. 37, 300–313 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulin Jirkof.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jirkof, P. Effects of experimental housing conditions on recovery of laboratory mice. Lab Anim 44, 65–70 (2015). https://doi.org/10.1038/laban.662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.662

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing