Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of maternal smoking on stress physiology in healthy neonates

Abstract

Objective:

To assess the impact of maternal smoking during pregnancy (MSDP) on the neonatal hypothalamic–pituitary–adrenal axis.

Study Design:

In a prospective observational study, salivary cortisol and cortisone levels were measured at the fourth day of life during resting conditions and in response to a pain-induced stress event in healthy neonates whose mothers smoked cigarettes during each stage of pregnancy and compared with controls.

Results:

Neonates in the control group (n=70) exhibited a physiologic stress response with a significant increase in cortisol (1.3 to 2.1 ng ml−1; P<0.05) and cortisone (11.8 to 17.8 ng ml−1; P<0.05) from baseline levels, whereas in neonates from mothers who smoked (n=33), cortisol (0.9 to 0.8 ng ml−1; P=0.77) and cortisone (11.5 to 13.0; P=0.19) stress response was not significantly different from baseline levels. A two-way analysis of variance confirmed these findings in both groups.

Conclusions:

Healthy neonates whose mothers smoked during pregnancy show a blunted stress response on the fourth day of life. Thus, MSDP leads to a dysregulation of the HPA axis with continued effects in neonatal life. This might explain long-term consequences of MSDP such as overweight, diabetes mellitus and modification of blood pressure control mechanisms in adult life.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Heffner LJ, Sherman CB, Speizer FE, Weiss ST . Clinical and environmental predictors of preterm labor. Obstet Gynecol 1993; 81 (5)Pt 1)):750–757.

    CAS  PubMed  Google Scholar 

  2. Curtin SC, Matthews TJ . Smoking prevalence and cessation before and during pregnancy: data from the birth certificate, 2014. Natl Vital Stat Rep 2016; 65 (1): 1–14.

    PubMed  Google Scholar 

  3. Kmietowicz Z . Smoking rates among pregnant women fall to all time low of 11%. BMJ 2015; 350: h3335.

    Article  Google Scholar 

  4. Pineles BL, Hsu S, Park E, Samet JM . Systematic review and meta-analyses of perinatal death and maternal exposure to tobacco smoke during pregnancy. Am J Epidemiol 2016; 184 (2): 87–97.

    Article  Google Scholar 

  5. Harger JH, Hsing AW, Tuomala RE, Gibbs RS, Mead PB, Eschenbach DA et al. Risk factors for preterm premature rupture of fetal membranes: a multicenter case-control study. Am J Obstet Gynecol 1990; 163 (1 Pt 1): 130–137.

    Article  CAS  Google Scholar 

  6. Bernstein IM, Mongeon JA, Badger GJ, Solomon L, Heil SH, Higgins ST . Maternal smoking and its association with birth weight. Obstet Gynecol 2005; 106 (5 Pt 1): 986–991.

    Article  Google Scholar 

  7. Ananth CV, Savitz DA, Luther ER . Maternal cigarette smoking as a risk factor for placental abruption, placenta previa, and uterine bleeding in pregnancy. Am J Epidemiol 1996; 144 (9): 881–889.

    Article  CAS  Google Scholar 

  8. Moore E, Blatt K, Chen A, Van Hook J, DeFranco EA . Relationship of trimester-specific smoking patterns and risk of preterm birth. Am J Obstet Gynecol 2016; 215 (1): 109.e1–6.

    Article  Google Scholar 

  9. MacDorman MF, Cnattingius S, Hoffman HJ, Kramer MS, Haglund B . Sudden infant death syndrome and smoking in the United States and Sweden. Am J Epidemiol 1997; 146 (3): 249–257.

    Article  CAS  Google Scholar 

  10. Mitchell EA, Milerad J . Smoking and the sudden infant death syndrome. Rev Environ Health 2006; 21 (2): 81–103.

    Article  CAS  Google Scholar 

  11. Rayfield S, Plugge E . Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity. J Epidemiol Community Health 2017; 71 (2): 162–173.

    Article  Google Scholar 

  12. Montgomery SM, Ekbom A . Smoking during pregnancy and diabetes mellitus in a British longitudinal birth cohort. BMJ 2002; 324 (7328): 26–27.

    Article  Google Scholar 

  13. Cohen G, Jeffery H, Lagercrantz H, Katz-Salamon M . Long-term reprogramming of cardiovascular function in infants of active smokers. Hypertension 2010; 55 (3): 722–728.

    Article  CAS  Google Scholar 

  14. Barker DJ, Osmond C . Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; 1 (8489): 1077–1081.

    Article  CAS  Google Scholar 

  15. Barker DJP, Eriksson JG, Forsén T, Osmond C . Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002; 31 (6): 1235–1239.

    Article  CAS  Google Scholar 

  16. McMillen IC, Robinson JS . Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005; 85 (2): 571–633.

    Article  CAS  Google Scholar 

  17. Ward AMV, Syddall HE, Wood PJ, Chrousos GP . Phillips DIW. Fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis: low birth weight and central HPA regulation. J Clin Endocrinol Metab 2004; 89 (3): 1227–1233.

    Article  CAS  Google Scholar 

  18. Phillips DIW, Bennett FI, Wilks R, Thame M, Boyne M, Osmond C et al. Maternal body composition, offspring blood pressure and the hypothalamic-pituitary-adrenal axis. Paediatr Perinat Epidemiol 2005; 19 (4): 294–302.

    Article  Google Scholar 

  19. Matta SG, Fu Y, Valentine JD, Sharp BM . Response of the hypothalamo-pituitary-adrenal axis to nicotine. Psychoneuroendocrinology 1998; 23 (2): 103–113.

    Article  CAS  Google Scholar 

  20. Rohleder N, Kirschbaum C . The hypothalamic-pituitary-adrenal (HPA) axis in habitual smokers. Int J Psychophysiol 2006; 59 (3): 236–243.

    Article  Google Scholar 

  21. Mantagos S, Koulouris A, Vagenakis A . A simple stress test for the evaluation of hypothalamic-pituitary-adrenal axis during the first 6 months of life. J Clin Endocrinol Metab 1991; 72 (1): 214–216.

    Article  CAS  Google Scholar 

  22. Woodside DB, Winter K, Fisman S . Salivary cortisol in children: correlations with serum values and effect of psychotropic drug administration. Can J Psychiatry 1991; 36 (10): 746–748.

    Article  CAS  Google Scholar 

  23. Stahl F, Amendt P, Dörner G . Total and free cortisol plasma levels in pre- and postnatal life. Endokrinologie 1979; 74 (2): 243–246.

    CAS  PubMed  Google Scholar 

  24. Santiago LB, Jorge SM, Moreira AC . Longitudinal evaluation of the development of salivary cortisol circadian rhythm in infancy. Clin Endocrinol (Oxf) 1996; 44 (2): 157–161.

    Article  CAS  Google Scholar 

  25. Gunnar MR . Reactivity of the hypothalamic-pituitary-adrenocortical system to stressors in normal infants and children. Pediatrics 1992; 90 (3 Pt 2): 491–497.

    CAS  PubMed  Google Scholar 

  26. Rauh M, Gröschl M, Rascher W, Dörr HG . Automated, fast and sensitive quantification of 17 alpha-hydroxy-progesterone, androstenedione and testosterone by tandem mass spectrometry with on-line extraction. Steroids 2006; 71 (6): 450–458.

    Article  CAS  Google Scholar 

  27. Schäffer L, Luzi F, Burkhardt T, Rauh M, Beinder E . Antenatal betamethasone administration alters stress physiology in healthy neonates. Obstet Gynecol 2009; 113 (5): 1082–1088.

    Article  Google Scholar 

  28. Stroud LR, Papandonatos GD, Rodriguez D, McCallum M, Salisbury AL, Phipps MG et al. Maternal smoking during pregnancy and infant stress response: test of a prenatal programming hypothesis. Psychoneuroendocrinology 2014; 48: 29–40.

    Article  CAS  Google Scholar 

  29. McDonald SD, Walker M, Perkins SL, Beyene J, Murphy K, Gibb W et al. The effect of tobacco exposure on the fetal hypothalamic-pituitary-adrenal axis. BJOG 2006; 113 (11): 1289–1295.

    Article  CAS  Google Scholar 

  30. Schäffer L, Müller-Vizentini D, Burkhardt T, Rauh M, Ehlert U, Beinder E . Blunted stress response in small for gestational age neonates. Pediatr Res 2009; 65 (2): 231–235.

    Article  Google Scholar 

  31. Schuetze P, Lopez FA, Granger DA, Eiden RD . The association between prenatal exposure to cigarettes and cortisol reactivity and regulation in 7-month-old infants. Dev Psychobiol 2008; 50 (8): 819–834.

    Article  CAS  Google Scholar 

  32. Ramsay DS, Lewis M . The effects of birth condition on infants’ cortisol response to stress. Pediatrics 1995; 95 (4): 546–549.

    CAS  PubMed  Google Scholar 

  33. Liu L, Liu F, Kou H, Zhang BJ, Xu D, Chen B et al. Prenatal nicotine exposure induced a hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in intrauterine growth retardation offspring rats. Toxicol Lett 2012; 214 (3): 307–313.

    Article  CAS  Google Scholar 

  34. Alves E, Azevedo A, Correia S, Barros H . Long-term maintenance of smoking cessation in pregnancy: an analysis of the birth cohort generation XXI. Nicotine Tob Res 2013; 15 (9): 1598–1607.

    Article  Google Scholar 

  35. Falk L, Nordberg A, Seiger A, Kjaeldgaard A, Hellström-Lindahl E . Smoking during early pregnancy affects the expression pattern of both nicotinic and muscarinic acetylcholine receptors in human first trimester brainstem and cerebellum. Neuroscience 2005; 132 (2): 389–397.

    Article  CAS  Google Scholar 

  36. Yang K, Julan L, Rubio F, Sharma A, Guan H . Cadmium reduces 11 beta-hydroxysteroid dehydrogenase type 2 activity and expression in human placental trophoblast cells. Am J Physiol Endocrinol Metab 2006; 290 (1): E135–E142.

    Article  CAS  Google Scholar 

  37. Chen M, Wang T, Liao Z-X, Pan X-L, Feng Y-H, Wang H . Nicotine-induced prenatal overexposure to maternal glucocorticoid and intrauterine growth retardation in rat. Exp Toxicol Pathol 2007; 59 (3–4): 245–251.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial Support: there was no financial support of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Haslinger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haslinger, C., Bamert, H., Rauh, M. et al. Effect of maternal smoking on stress physiology in healthy neonates. J Perinatol 38, 132–136 (2018). https://doi.org/10.1038/jp.2017.172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2017.172

Search

Quick links