Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cerebral modulation of the autonomic nervous system in term infants

Abstract

Objective:

Central topography of autonomic nervous system (ANS) function has yet to be fully deciphered. In adults it has been shown to lateralize sympathetic and parasympathetic influence predominantly to the right and left cerebral hemispheres, respectively. We examined functional topography of central ANS in newborn subjects utilizing spectral analysis of heart rate variability (HRV), an established measure of ANS function.

Study Design:

We studied newborns with hypoxic-ischemic encephalopathy participating in a prospective study undergoing a therapeutic hypothermia protocol.

We included subjects with continuous heart rate data over the first 3 h of normothermia (post rewarming) and brain magnetic resonance imaging, which was reviewed and scored according to a 4 region scheme. HRV was evaluated by spectral analysis in the low-frequency (0.05 to 0.25 Hz) and high-frequency (0.3 to 1 Hz) ranges. The relationship between injured brain regions and HRV was studied using multiple regressions.

Results:

Forty eight newborns were included. When examined in isolation, right hemisphere injury had a significant negative effect on HRV (−0.088; 95% CI: −0.225,−0.008). The combination of posterior fossa region injury with right hemispheric injury or left hemispheric injury demonstrated significant positive (0.299; 95% CI: 0.065, 0.518) and negative (−0.475; 95% CI: −0.852, −0.128) influences on HRV, respectively. The association between brain injury location and HRV in the high-frequency range did not reach significance.

Conclusion:

Our data support the notion that lateralized cerebral modulation of the ANS, specifically of its sympathetic component, is present in the term newborn, and suggest complex modulation of these tracts by components of the posterior fossa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Verklan MT, Padhye NS . Spectral analysis of heart rate variability: an emerging tool for assessing stability during transition to extrauterine life. J Obstet Gynecol Neonatal Nurs 2004; 33: 256–265.

    Article  PubMed  Google Scholar 

  2. van Laar JO, Peters CH, Vullings R, Houterman S, Oei SG . Power spectrum analysis of fetal heart rate variability at near term and post term gestation during active sleep and quiet sleep. Early Hum Dev 2009; 85: 795–798.

    Article  CAS  PubMed  Google Scholar 

  3. Task Force. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 1996; 17: 354–381.

    Article  Google Scholar 

  4. Longin E, Schaible T, Lenz T, Konig S . Short term heart rate variability in healthy neonates: normative data and physiological observations. Early Hum Dev 2005; 81: 663–671.

    Article  PubMed  Google Scholar 

  5. Yiallourou SR, Sands SA, Walker AM, Horne RS . Maturation of heart rate and blood pressure variability during sleep in term-born infants. Sleep 2012; 35 (2): 177–186.

    PubMed  PubMed Central  Google Scholar 

  6. Longin E, Gerstner T, Schaible T, Lenz T, Konig S . Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat Med 2006; 34: 303–308.

    Article  PubMed  Google Scholar 

  7. Massaro AN, Govindan RB, Al-Shargabi T, Andescavage NN, Metzler M, Chang T et al. Heart rate variability in encephalopathic newborns during and after therapeutic hypothermia. J Perinatol 2014; 34: 836–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aliefendioglu D, Dogru T, Albayrak M, Dibekmisirlioglu E, Sanli C . Heart rate variability in neonates with hypoxic ischemic encephalopathy. Indian J Pediatr 2012; 79: 1468–1472.

    Article  PubMed  Google Scholar 

  9. Vergales BD, Zanelli SA, Matsumoto JA, Goodkin HP, Lake DE, Moorman JR et al. Depressed heart rate variability is associated with abnormal EEG, MRI, and death in neonates with hypoxic ischemic encephalopathy. Am J Perinatol 2014; 31 (10): 855–862.

    Article  PubMed  Google Scholar 

  10. Griffin MP, Lake DE, O'Shea TM, Moorman JR . Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr Res 2007; 61: 222–227.

    Article  PubMed  Google Scholar 

  11. Stone ML, Tatum PM, Weitkamp JH, Mukherjee AB, Attridge J, McGahren ED et al. Abnormal heart rate characteristics before clinical diagnosis of necrotizing enterocolitis. J Perinatol 2013; 33: 847–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DiPietro JA, Bornstein MH, Hahn CS, Costigan K, Achy-Brou A . Fetal heart rate and variability: stability and prediction to developmental outcomes in early childhood. Child Dev 2007; 78: 1788–1798.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Patural H, Pichot V, Jaziri F, Teyssier G, Gaspoz JM, Roche F et al. Autonomic cardiac control of very preterm newborns: a prolonged dysfunction. Early Hum Dev 2008; 84: 681–687.

    Article  PubMed  Google Scholar 

  14. Addison K, Griffin MP, Moorman JR, Lake DE, O'Shea TM . Heart rate characteristics and neurodevelopmental outcome in very low birth weight infants. J Perinatol 2009; 29: 750–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Janig W . The Integrative Action of the Autonomic Nervous System Neurobiology of Homeostasis. Cambridge University Press: New York, USA, 2008; 293–317.

    Google Scholar 

  16. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC . Cardiovascular effects of human insular cortex stimulation. Neurology 1992; 42: 1727–1732.

    Article  CAS  PubMed  Google Scholar 

  17. Westerhaus MJ, Loewy AD . Central representation of the sympathetic nervous system in the cerebral cortex. Brain Res 2001; 903: 117–127.

    Article  CAS  PubMed  Google Scholar 

  18. Hyam JA, Kringelbach ML, Silburn PA, Aziz TZ, Green AL . The autonomic effects of deep brain stimulation—a therapeutic opportunity. Nat Rev Neurol 2012; 8: 391–400.

    Article  PubMed  Google Scholar 

  19. Kimmerly DS, O'Leary DD, Menon RS, Gati JS, Shoemaker JK . Cortical regions associated with autonomic cardiovascular regulation during lower body negative pressure in humans. J Physiol 2005; 569: 331–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R . Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage 2008; 42: 169–177.

    Article  PubMed  Google Scholar 

  21. Hanna BD, Nelson MN, White-Traut RC, Silvestri JM, Vasan U, Rey PM et al. Heart rate variability in preterm brain-injured and very-low-birth-weight infants. Biol Neonate 2000; 77: 147–155.

    Article  CAS  PubMed  Google Scholar 

  22. Schneebaum Sender N, Govindan RB, Sulemanji M, Al-Shargabi T, Lenin RB, Eksioglu YZ et al. Effects of regional brain injury on the newborn autonomic nervous system. Early Hum Dev 2014; 90: 893–896.

    Article  PubMed  Google Scholar 

  23. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005; 353: 1574–1584.

    Article  CAS  PubMed  Google Scholar 

  24. Ulusar UD, Govindan RB, Wilson JD, Lowery CL, Preissl H, Eswaran H . Adaptive rule based fetal QRS complex detection using Hilbert transform. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 4666–4669.

    PubMed Central  Google Scholar 

  25. Govindan RB, Massaro AN, Niforatos N, du Plessis A . Mitigating the effect of non-stationarity in spectral analysis-an application to neonate heart rate analysis. Comput Biol Med 2013; 43: 2001–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andriessen P, Oetomo SB, Peters C, Vermeulen B, Wijn PF, Blanco CE . Baroreceptor reflex sensitivity in human neonates: the effect of postmenstrual age. J Physiol 2005; 568: 333–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Congdon P . Applied Bayesian Modelling. Wiley Series in Probability and Statistics: West Sussex, England, 2003.

    Book  Google Scholar 

  28. Lee S-Y, Song X-Y . Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behav Res 2004; 39: 653–686.

    Article  PubMed  Google Scholar 

  29. Muthén B, Muthén L . Mplus User's Guide. Muthen & Muthen: Los Angeles, CA, USA, 1998–2012.

    Google Scholar 

  30. Muthén B . Bayesian analysis in Mplus:A Brief Introduction. Unpublished manuscript. www.statmodel.com/download/IntroBayesVersion. 17May2010;pp203.

  31. Schwartz GE, Weinberger DA, Singer JA . Cardiovascular differentiation of happiness, sadness, anger, and fear following imagery and exercise. Psychosom Med 1981; 43: 343–364.

    Article  CAS  PubMed  Google Scholar 

  32. Zamrini EY, Meador KJ, Loring DW, Nichols FT, Lee GP, Figueroa RE et al. Unilateral cerebral inactivation produces differential left/right heart rate responses. Neurology 1990; 40: 1408–1411.

    Article  CAS  PubMed  Google Scholar 

  33. Oppenheimer SM, Kedem G, Martin WM . Left-insular cortex lesions perturb cardiac autonomic tone in humans. Clin Auton Res 1996; 6: 131–140.

    Article  CAS  PubMed  Google Scholar 

  34. Colivicchi F, Bassi A, Santini M, Caltagirone C . Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke 2004; 35: 2094–2098.

    Article  PubMed  Google Scholar 

  35. Algra A, Gates PC, Fox AJ, Hachinski V, Barnett HJ . Side of brain infarction and long-term risk of sudden death in patients with symptomatic carotid disease. Stroke 2003; 34: 2871–2875.

    Article  PubMed  Google Scholar 

  36. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ . The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 2006; 52: 93–106.

    Article  PubMed  Google Scholar 

  37. Wong SW, Massé N, Kimmerly DS, Menon RS, Shoemaker JK . Ventral medial prefrontal cortex and cardiovagal control in conscious humans. Neuroimage 2007; 35: 698–708.

    Article  PubMed  Google Scholar 

  38. Basnayake SD, Green AL, Paterson DJ . Mapping the central neurocircuitry that integrates the cardiovascular response to exercise in humans. Exp Physiol 2012; 97: 29–38.

    Article  PubMed  Google Scholar 

  39. Loewy AD, Spyer KM . Central Regulation of Autonomic Function. Oxford University Press: New York, USA, 1990.

    Google Scholar 

  40. Gournay V, Drouin E, Rozé JC . Development of baroreflex control of heart rate in preterm and full term infants. Arch Dis Child Fetal Neonatal Ed 2002; 86: F151–F154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Myers MM, Fifer WP, Schaeffer L, Sahni R, Ohira-Kist K, Stark RI et al. Effects of sleeping position and time after feeding on the organization of sleep/wake states in prematurely born infants. Sleep 1998; 21: 343–349.

    CAS  PubMed  Google Scholar 

  42. Witcombe NB, Yiallourou SR, Walker AM, Horne RS . Delayed blood pressure recovery after head-up tilting during sleep in preterm infants. J Sleep Res 2010; 19: 93–102.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Schneebaum Sender.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

Conception and design: NSS, RG, ANM, JW, AJdP; collection and assembly of data: NSS, RG, ANM, MM, AJdP; analysis and interpretation of the data: NSS, RG, MTW, ANM, MM, JW, YIC, AJdP; intellectual contribution for drafting of the article: NSS, RG, MTW, ANM, MM, JW, YIC, AJdP; critical revision of the article for important intellectual content: NSS, RG, MTW, ANM, MM, JW, AJdP; final approval of the article: NSS, RG, MTW, ANM, MM, JW, YIC, AJdP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneebaum Sender, N., Govindan, R., Whitehead, M. et al. Cerebral modulation of the autonomic nervous system in term infants. J Perinatol 37, 558–562 (2017). https://doi.org/10.1038/jp.2016.248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.248

This article is cited by

Search

Quick links