Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The effect of pasteurization on trace elements in donor breast milk

Abstract

Objective:

Premature infants often receive pasteurized donor human milk when mothers are unable to provide their own milk. This study aims to establish the effect of the pasteurization process on a range of trace elements in donor milk.

Study Design:

Breast milk was collected from 16 mothers donating to the milk bank at the Royal Brisbane and Women’s Hospital. Samples were divided into pre- and post-pasteurization aliquots and were Holder pasteurized. Inductively coupled plasma mass spectrometry was used to analyze the trace elements zinc (Zn), copper (Cu), selenium (Se), manganese (Mn), iodine (I), iron (Fe), molybdenum (Mo) and bromine (Br). Differences in trace elements pre- and post-pasteurization were analyzed.

Results:

No significant differences were found between the trace elements tested pre- and post-pasteurization, except for Fe (P<0.05). The median (interquartile range, 25 to 75%; μg l−1) of trace elements for pre- and post- pasteurization aliquots were—Zn: 1639 (888–4508), 1743 (878–4143), Cu: 360 (258–571), 367 (253–531), Se: 12.34 (11.73–17.60), 12.62 (11.94–16.64), Mn: (1.48 (1.01–1.75), 1.49 (1.11–1.75), I (153 (94–189), 158 (93–183), Fe (211 (171–277), 194 (153–253), Mo (1.46 (0.37–2.99), 1.42 (0.29–3.73) and Br (1066 (834–1443), 989 (902–1396).

Conclusions:

Pasteurization had minimal effect on several trace elements in donor breast milk but high levels of inter-donor variability of trace elements were observed. The observed decrease in the iron content of pasteurized donor milk is, however, unlikely to be clinically relevant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bertino E, Giuliani F, Occhi L, Coscia A, Tonetto P, Marchino F et al. Benefits of donor human milk for preterm infants: current evidence. Early Hum Dev 2009; 85S9–S10 (10 Suppl): S9–S10.

    Article  Google Scholar 

  2. Carroll K, Herrmann K . Introducing donor human milk to the NICU: lessons for Australia. Breastfeed Rev 2012; 20 (3): 19–26.

    PubMed  Google Scholar 

  3. National Institute for Health and Clinical Excellence Donor Breast Milk Banks: The Operation Of Donor Breast Milk Bank Services. National Institute for Health and Clinical Excellence: London, 2010. Available from www.nice.org.uk/guidance/CG93 (date last accessed 29 February 2016).

  4. MacDonald LE, Brett J, Kelton D, Majowicz SE, Snedeker K, Sargeant JM . A systematic review and meta analysis on the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. J Food Prot 2011; 74 (11): 1814–1832.

    Article  CAS  PubMed  Google Scholar 

  5. Ewaschuk JB, Unger S, O’Connor DL, Stonr D, Harvey S, Clandinin MT et al. Effect of pasteurization on selected immune components of donated human breast milk. J Perinatol 2011; 31: 593–598.

    Article  CAS  PubMed  Google Scholar 

  6. Ley SH, Hanley AJ, Stone D, O'Connor DL . Effects of pasteurization on adiponectin and insulin concentrations in donor human milk. Pediatr Res 2011; 70 (3): 278–281.

    Article  CAS  PubMed  Google Scholar 

  7. Van Gysel M, Cossey V, Fieuws S, Schuermans A . Impact of pasteurization on the antibacterial properties of human milk. Eur J Pediatr 2012; 171 (8): 1231–1237.

    Article  PubMed  Google Scholar 

  8. McPherson RJ, Wagner CL . The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk. Adv Exp Med Biol 2001; 501: 559–566.

    Article  CAS  PubMed  Google Scholar 

  9. Akinbi H, Meinzen-Derr J, Auer C, Ma Y, Pullum D, Kusano R et al. Alterations in the host defense properties of human milk following prolonged storage or pasteurization. J Pediatr Gastroenterol Nutr 2010; 51 (3): 347–352.

    CAS  PubMed  Google Scholar 

  10. da Costa RS, do Carmo MG, Saunders C, de Jesus EF, Lopes RT, Simabuco SM . Characterization of iron, copper and zinc levels in the colostrum of mothers of term and pre-term infants before and after pasteurization. Int J Food Sci Nutr 2003; 54 (2): 111–117.

    Article  CAS  PubMed  Google Scholar 

  11. Belfort MB, Pearce EN, Braverman LE, He X, Brown RS . Low iodine content in the diets of hospitalized preterm infants. J Clin Endocrinol Metab 2012; 97 (4): E632–E636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riskin A, Hartman C, Shamir R . Parenteral nutrition in very low birth weight preterm infants. Isr Med Assoc J 2015; 17 (5): 310–315.

    PubMed  Google Scholar 

  13. Makhoul IR, Sammour RN, Diamond E, Shohat I, Tamir A, Shamir R . Selenium concentrations in maternal and umbilical cord blood at 24-42 weeks of gestation: basis for optimization of selenium supplementation to premature infants. Clin Nutr 2004; 23 (3): 373–381.

    Article  CAS  PubMed  Google Scholar 

  14. Georgieff MK . Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 2007; 85 (suppl): 614S–620S.

    CAS  PubMed  Google Scholar 

  15. Canpolat F, Canpolat FE, Eskioglu F . Acrodermatitis enteropathica in a full-term exclusively breast-fed infant. Eur J Dermatol 2008; 18 (2): 192–193.

    PubMed  Google Scholar 

  16. Azevedo PM, Gavazzoni-Dias MF, Avelleira JC, Lerer C, de Sousa AS, Azulay DR . Acrodermatitis enteropathica in a full-term breast-fed infant: case report and literature review. Int J Dermatol 2008; 47 (10): 1056–1057.

    Article  PubMed  Google Scholar 

  17. Herson VC, Phillipps AF, Zimmerman A . Acute zinc deficiency in a premature infant after bowel resection and intravenous alimentation. Am J Dis Child 1981; 135 (10): 968–969.

    CAS  PubMed  Google Scholar 

  18. Burjonrappa SC, Miller M . Role of trace elements in parenteral nutrition support of the surgical neonate. J Pediatr Surg 2012; 47 (4): 760–771.

    Article  PubMed  Google Scholar 

  19. Harper JI, Thompson D, Kovar IZ, Copeman PW, Barltrop D . Zinc deficiency in a preterm neonate with necrotizing enterocolitis. J R Soc Med 1984; 4: 40–41.

    Google Scholar 

  20. Olivares M, Araya M, Uauy R . Copper homeostasis in infant nutrition: deficit and excess. J Pediatr Gastroenterol Nutr 2000; 31 (Suppl 2): 102–111.

    Article  CAS  PubMed  Google Scholar 

  21. Stern BR . Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J Toxicol Environ Health A 2010; 73 (2): 114–127.

    Article  CAS  PubMed  Google Scholar 

  22. Agertt F, Crippa AC, Lorenzoni PJ, Scola RH, Bruck I, Paola L et al. Menkes' disease: case report. Arq Neuropsiquiatr 2007; 65 (1): 157–160.

    Article  PubMed  Google Scholar 

  23. Aschner JL, Aschner M . Nutritional aspects of manganese homeostasis. Mol Aspects Med 2005; 26 (4–5): 353–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erikson KM, Thompson K, Aschner J, Aschner M . Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 2007; 113 (2): 369–377.

    Article  CAS  PubMed  Google Scholar 

  25. Rayman MP . The importance of selenium to human health. Lancet 2000; 356 (9225): 233.

    Article  CAS  PubMed  Google Scholar 

  26. Ergul Y, Nisli K, Avci B, Omeroglu RE . Dilated cardiomyopathy associated with dystrophic epidermolysis bullosa: role of micronutrient deficiency? Turk Kardiyol Dern Ars 2011; 39 (4): 328–331.

    Article  PubMed  Google Scholar 

  27. Yagi M, Tani T, Hashimoto T, Shimizu K, Nagakawa T, Miwa K et al. Four cases of selenium deficiency in postoperative long-term enteral nutrition. Nutrition 1996; 12 (1): 40–43.

    Article  CAS  PubMed  Google Scholar 

  28. Ishida T, Himeno K, Torigoe Y, Inoue M, Wakisaka O, Tabuki T et al. Selenium deficiency in a patient with Crohn's disease receiving long-term total parenteral nutrition. Intern Med 2003; 42 (2): 154–157.

    Article  PubMed  Google Scholar 

  29. Lockitch G, Jacobson B, Quigley G, Dison P, Pendray M . Selenium deficiency in low birth weight neonates: an unrecognized problem. J Pediatr 1989; 114 (5): 865–870.

    Article  CAS  PubMed  Google Scholar 

  30. Darlow BA, Austin NC . Selenium supplementation to prevent short-term morbidity in preterm neonates. Cochrane Database Syst Rev 2003; (4): Cd003312.

  31. Zimmermann MB, Jooste PL, Pandav CS . Iodine-deficiency disorders. Lancet 2008; 372 (9645): 1251–1262.

    Article  CAS  PubMed  Google Scholar 

  32. Gozzelino R, Arosio P . The importance of iron in pathophysiologic conditions. Front Pharmacol 2015; 6: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Osland EJ, Ali A, Isenring E, Ball P, Davis M, Gillanders L . Australasian Society for Parenteral and Enteral Nutrition guidelines for supplementation of trace elements during parenteral nutrition. Asia Pac J Clin Nutr 2014; 23 (4): 545–554.

    CAS  PubMed  Google Scholar 

  34. McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG . Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 2014; 157 (6): 1380–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohd-Taufek N, Cartwright D, Davies M, Hewavitharana AK, Koorts P, Shaw PN et al. The simultaneous analysis of eight essential trace elements in human milk by ICP-MS. Food Anal Methods 2016; 9: 1–8.

    Article  Google Scholar 

  36. Khan N, Jeong IS, Hwang IM, Kim JS, Choi SH, Nho EY et al. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS. Food Chem 2013; 141 (4): 3566–3570.

    Article  CAS  PubMed  Google Scholar 

  37. Domellöf M, Georgieff MK . Postdischarge iron requirements of the preterm infant. J Pediatr 2015; 167 (Suppl 4): S31–S35.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dani C, Martelli E, Bertini G, Pezzati M, Rossetti M, Buonocore G et al. Effect of blood transfusions on oxidative stress in preterm infants. Arch Dis Child Fetal Neonatal Ed 2004; 89 (5): F408–F411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Perrone S, Negro S, Tataranno ML, Buonocore G . Oxidative stress and antioxidant strategies in newborns. J Matern Fetal Neonatal Med 2010; 23 (Suppl 3): 63–65.

    Article  PubMed  Google Scholar 

  40. Long H, Yi JM, Hu PL, Li ZB, Qiu WY, Wang F et al. Benefits of iron supplementation for low birth weight infants: a systematic review. BMC Pediatr 2012; 12: 99.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chi EY, Krishnan S, Randolph TW, Carpenter JF . Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 2003; 20 (9): 1325–1336.

    Article  CAS  PubMed  Google Scholar 

  42. Lonnerdal B . Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 2003; 77 (6): 1537s–1543s.

    Article  PubMed  Google Scholar 

  43. Lonnerdal B, Iyer S . Lactoferrin: molecular structure and biological function. Annu Rev Nutr 1995; 15: 93–110.

    Article  CAS  PubMed  Google Scholar 

  44. Brisson G, Britten M, Pouliot Y . Effect of iron saturation on the recovery of lactoferrin in rennet whey coming from heat-treated skim milk. J Dairy Sci 2007; 90 (6): 2655–2664.

    Article  CAS  PubMed  Google Scholar 

  45. Rabe M, Verdes D, Seeger S . Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 2011; 162 (1–2): 87–106.

    Article  CAS  PubMed  Google Scholar 

  46. Kim S-Y, Park J-H, Kim EA-R, Lee-Kim YC . Longitudinal study on trace mineral composition (selenium, zinc, copper, manganese) in Korean human preterm milk. J Korean Med Sci 2012; 27: 532–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hunt CD, Nielsen FH . Nutritional Aspects of Minerals in Bovine and Human Milks. In: McSweeney PLH, Fox PF (eds). Advanced Dairy Chemistry, vol. 3. Springer Science: USA, 2009, pp 420–426.

    Google Scholar 

Download references

Acknowledgements

We thank the RBWH Milk Bank, Royal Brisbane and Women’s Hospital, and Eugene Lee for the technical laboratory assistance by Inorganic Chemistry, Queensland Health Forensic & Scientific Services, Australia. Nor Mohd-Taufek is sponsored by the Ministry of Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Whitfield.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd-Taufek, N., Cartwright, D., Davies, M. et al. The effect of pasteurization on trace elements in donor breast milk. J Perinatol 36, 897–900 (2016). https://doi.org/10.1038/jp.2016.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.88

Search

Quick links