Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Low-sodium DASH reduces oxidative stress and improves vascular function in salt-sensitive humans

Abstract

Salt induces oxidative stress in salt-sensitive (SS) animals and man. It is not known whether in SS subjects the low-sodium dietary approaches to stop hypertension (LS-DASH) reduces oxidative stress more than DASH, which is high in antioxidants. To assess the effects of DASH and LS-DASH on oxidative stress, 19 volunteers were studied after 3 weeks of a standardized usual low fruits and vegetables diet (ULFV), followed by 3 weeks on DASH (both diets 120 mmol Na+ per day), then 3 weeks on LS-DASH (60 mmol Na+ per day). SS was defined as systolic blood pressure 5 mm Hg lower on LS-DASH than DASH. In SS subjects (N=9), systolic blood pressure was lower on LS-DASH (111.0±2.0 mm Hg) than DASH (118.0±2.2, P<0.01) and ULFV (122.3±2.7, P=0.002). In salt-resistant (SR) volunteers (N=10), systolic blood pressure was lower on DASH (113.0±1.6) than ULFV (119.0±1.8, P<0.05) but not LS-DASH (115.7±1.8). Urine F2-isoprostanes, a marker of oxidative stress, were lower in SS subjects on LS-DASH (1.69±0.24) than ULFV (3.09±0.50, P<0.05) and marginally lower than DASH (2.46±0.44, P<0.20). F2-isoprostanes were not different among the three diets in SR volunteers (2.18±0.29, 2.06±0.29, 2.27±0.53, respectively). Aortic augmentation index, a measure of vascular stiffness, was lower in SS subjects on LS-DASH than either DASH or ULFV, and lower on DASH than ULFV in SR volunteers. In SS but not SR subjects, LS-DASH is associated with lower values for F2-isoprostanes and the aortic augmentation index. The results suggest that LS-DASH decreases oxidative stress, improves vascular function and lowers blood pressure in SS but not SR volunteers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Muntzel M, Drüeke T . A comprehensive review of the salt and blood pressure relationship. Am J Hypertens 1992; 5: 1S–42S.

    Article  CAS  PubMed  Google Scholar 

  2. Campese VM . Salt sensitivity in hypertension: renal and cardiovascular implications. Hypertension 1994; 23: 531–550.

    Article  CAS  PubMed  Google Scholar 

  3. Weinberger MH . Salt sensitivity of blood pressure in humans. Hypertension 1996; 27: 481–490.

    Article  CAS  PubMed  Google Scholar 

  4. Russo C, Olivieri O, Girelli D, Faccini G, Zenari ML, Lombardi S et al. Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens 1998; 16: 1267–1271.

    Article  CAS  PubMed  Google Scholar 

  5. Lacy F, O'Connor DT, Schmid-Schonbein GW . Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. J Hypertens 1998; 16 (3): 291–303.

    Article  CAS  PubMed  Google Scholar 

  6. Chen PY, Gladish RD, Sanders PW . Vascular smooth muscle nitric oxide synthase anomalies in Dahl/Rapp salt-sensitive rats. Hypertension 1998; 31: 918–924.

    Article  CAS  PubMed  Google Scholar 

  7. Bragulat E, de la Sierra A, Antonio MT, Coca A . Endothelial dysfunction in salt-sensitive essential hypertension. Hypertension 2001; 37: 444–448.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou MS, Adam AG, Jaimes EA, Raij L . In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II. Hypertension 2003; 42: 945–951.

    Article  CAS  PubMed  Google Scholar 

  9. Jaimes EA, Zhou MS, Pearse DD, Puzis L, Raij L . Upregulation of cortical COX-2 in salt-sensitive hypertension: role of angiotensin II and reactive oxygen species. Am J Physiol 2008; 29: F385–F392.

    Google Scholar 

  10. Tian N, Moore RS, Braddy S, Rose RA, Gu JW, Hughson MD et al. Interactions between oxidative stress and inflammation in salt-sensitive hypertension. Am J Physiol 2007; 293: H3388–H3395.

    CAS  Google Scholar 

  11. Swei A, Lacy F, DeLano FA, Schmid-Schonbein GW . Oxidative stress in the Dahl hypertensive rat. Hypertension 1997; 30: 1628–1633.

    Article  CAS  PubMed  Google Scholar 

  12. Laffer CL, Bolterman RJ, Romero JC, Elijovich F . Effect of salt on isoprostanes in salt-sensitive essential hypertension. Hypertension 2006; 47: 434–440.

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez R, Fischer P, Cuniberti L, Masnatta LD, Ramirez AJ . Vascular oxidative stress is associated with insulin resistance in hyper-reninemic nonmodulating essential hypertension. J Hypertens 2007; 25: 2434–2440.

    Article  CAS  PubMed  Google Scholar 

  14. Sacks M, Svetkey LP, Vollmer WM, Appel LJ, Bray FA, Harsha D, et al., DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001; 344: 3–10.

    Article  CAS  PubMed  Google Scholar 

  15. Lopes HF, Martin KL, Nashar K, Morrow JD, Goodfriend TL, Egan BM . DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 2003; 41: 422–430.

    Article  CAS  PubMed  Google Scholar 

  16. Al-Solaiman Y, Jesri A, Mountford WK, Lackland DT, Zhao Y, Egan BM . DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fiber. J Hum Hypertens 2009; (accepted).

  17. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005; 112: 2735–2752.

    Article  PubMed  Google Scholar 

  18. Harris J, Benedict F . A biometric study of human basal metabolism. Proc Natl Acad Sci USA 1918; 4: 370–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schakel S, Buzzard I, Gebhardt S . Procedures for estimating nutrient values for food composition databases. J Food Compost Anal 1997; 10: 102–114.

    Article  CAS  Google Scholar 

  20. McVeigh GE, Bratteli CW, Morgan DJ, Alinder CM, Glasser SP, Finkelstein SM et al. Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance. Hypertension 1999; 33: 1392–1398.

    Article  CAS  PubMed  Google Scholar 

  21. Stojiljkovic MP, Zhang D, Lopes HF, Lee CG, Goodfriend TL, Egan BM . Hemodynamic effects of lipids in humans. Am J Physiol 2001; 280: R1674–R1679.

    CAS  Google Scholar 

  22. Lemogoum D, Flores G, Van den Abeele W, Ciarka A, Leeman M, Dagaute JP et al. Validity of pulse pressure and augmentation index as surrogate measures of arterial stiffness during beta-adrenergic stimulation. J Hypertens 2004; 22: 511–517.

    Article  CAS  PubMed  Google Scholar 

  23. Van DeWater JM, Miller TW, Vogel RL, Mount BE, Dalton ML . Impedance cardiography. The next vital sign technology? Chest 2003; 123: 2028–2033.

    Article  Google Scholar 

  24. Besch W, Woltanski KP, Keilacker H, Diaz-Alonso JM, Schulz B, Amendt P et al. Measurement of insulin in human sera using a new RIA kit, 1: insulin determination in the absence of insulin antibodies–conventional assay and micro modification. Exp Clin Endocrinol 1987; 90: 264–270.

    Article  CAS  PubMed  Google Scholar 

  25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and ß-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  PubMed  Google Scholar 

  26. De Bruin TW, Brouwer CB, Gimpel JA, Erkelens DW . Postprandial decrease in HDL cholesterol and HDL apo A-I in normal subjects in relation to triglyceride metabolism. Am J Physiol 1991; 260: E492–E498.

    Article  CAS  PubMed  Google Scholar 

  27. Friedewald WT, Levy RI, Fredrickson DS . Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–502.

    CAS  PubMed  Google Scholar 

  28. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendrickson S, et al., Chronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006; 145: 247–254.

    Article  CAS  PubMed  Google Scholar 

  29. Manning Jr RD, Meng S, Tian N . Renal and vascular oxidative stress and salt-sensitivity of arterial pressure. Acta Physiol Scand 2003; 179: 243–250.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki H, Swei A, Zweifach BW, Schmid-Schonbein GW . In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography. Hypertension 1995; 25: 1083–1089.

    Article  CAS  PubMed  Google Scholar 

  31. Lenda DM, Sauls BA, Boegehold MA . Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Am J Physiol 2000; 279: H7–H14.

    CAS  Google Scholar 

  32. Satoh M, Fujimoto S, Haruna Y, Arakawa S, Horike H, Komai N et al. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol 2005; 288: F1144–F1152.

    CAS  Google Scholar 

  33. Chen PY, Gladish RD, Sanders PW . Vascular smooth muscle nitric oxide synthase anomalies in Dahl/Rapp salt-sensitive rats. Hypertension 1998; 31: 918–924.

    Article  CAS  PubMed  Google Scholar 

  34. Boegehold MA . Effect of dietary salt on arteriolar nitric oxide in striated muscle of normotensive rats. Am J Physiol 1993; 264: H1810–H1816.

    CAS  PubMed  Google Scholar 

  35. Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM . Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension 2002; 39: 1088–1094.

    Article  CAS  PubMed  Google Scholar 

  36. Bragulat E, de la Sierra A, Antonio MT, Coca A . Endothelial dysfunction in salt-sensitive essential hypertension. Hypertension 2001; 37: 444–448.

    Article  CAS  PubMed  Google Scholar 

  37. Berry C, Brosnan MJ, Fennell J, Hamilton CA, Dominiczak AF . Oxidative stress and vascular damage in hypertension. Curr Opin Nephrol Hypertens 2001; 10: 247–255.

    Article  CAS  PubMed  Google Scholar 

  38. Panza JA, Quyyumi AA, Brush Jr JE, Epstein SE . Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22–27.

    Article  CAS  PubMed  Google Scholar 

  39. Fujiwara N, Osanai T, Kamada T, Katoh T, Takahashi K, Okumura K . Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation 2000; 101: 856–861.

    Article  CAS  PubMed  Google Scholar 

  40. McEniery CM, Wallace S, Mackenzie IS, McDonnell B, Yasmin, Newby DE et al. Endothelial function is associated with pulse pressure, pulse wave velocity, and augmentation index in healthy humans. Hypertension 2006; 48: 602–608.

    Article  CAS  PubMed  Google Scholar 

  41. Stamatelopoulos KS, Kalpakos D, Protogerou AD, Papamichael CM, Ikonomidis I, Tsitsirikos M et al. The combined effect of augmentation index and carotid intima-media thickness on cardiovascular risk in young and middle-aged men without cardiovascular. J Hum Hypertens 2006; 20: 273–279.

    Article  CAS  PubMed  Google Scholar 

  42. McVeigh GE, Allen PB, Morgan DR, Hanratty CG, Silke B . Nitric oxide modulation of blood vessel tone identified by arterial waveform analysis. Clin Sci 2001; 100: 387–393.

    Article  CAS  Google Scholar 

  43. Kals J, Kampus P, Kals M, Teesalu R, Zilmer K, Pulges A et al. Arterial elasticity is associated with endothelial vasodilatory function and asymmetric dimethylargnine level in healthy subjects. Scand J Clin Lab Invest 2007; 67: 536–544.

    Article  CAS  PubMed  Google Scholar 

  44. Finkelstein SM, Cohn JN . First- and third-order models for determining arterial compliance. J Hypertens 1992; 1: S11–S14.

    Google Scholar 

  45. McVeigh GE, Burns DE, Finkelstein SM, McDonald KM, Mock JE, Feske W et al. Reduced vascular compliance as a marker for essential hypertension. Am J Hypertens 1991; 4: 245–251.

    Article  CAS  PubMed  Google Scholar 

  46. Glasser SP, Arnett DK, McVeigh GE, Finkelstein SM, Bank AJ, Morgan DJ et al. Vascular compliance and cardiovascular disease: a risk factor or a marker? Am J Hypertens 1997; 10: 1175–1189.

    Article  CAS  PubMed  Google Scholar 

  47. Piccirillo G, Bucca C, Durante M, Santagada E, Munizzi MR, Cacciafesta M et al. Heart rate and blood pressure variabilities in salt-sensitive hypertension. Am J Hypertens 2000; 13: 873–883.

    Article  Google Scholar 

  48. Campese VM, Romoff MS, Leviatan J, Saglikes Y, Friedler RM, Massry SG . Abnormal relationship between sodium intake and sympathetic nervous system activity in salt sensitive patients with essential hypertension. Kidney Int 1982; 21: 371–378.

    Article  CAS  PubMed  Google Scholar 

  49. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G . Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 1998; 31: 68–72.

    Article  CAS  PubMed  Google Scholar 

  50. Coruzzi P, Parati G, Brambilla L, Brambilla V, Gualerzi M, Novarini A et al. Effects of salt sensitivity on neural cardiovascular regulation in essential hypertension. Hypertension 2005; 46: 1321–1326.

    Article  CAS  PubMed  Google Scholar 

  51. Trimarco B, Lembo G, Ricciardelli B, De Luca N, Rendina V, Condorelli G et al. Salt-induced plasticity in cardiopulmonary baroreceptor reflexes in salt-resistant hypertensive patients. Hypertension 1991; 18: 483–493.

    Article  CAS  PubMed  Google Scholar 

  52. Blaustein MP, Zhang J, Chen L, Hamilton BP . How does salt retention raise blood pressure? Am J Physiol 2006; 90: R514–R523.

    Google Scholar 

  53. Hamlyn JM . Increased levels of a humoral digitalis-like factor in deoxycorticosterone acetate-induced hypertension in the pig. J Endocrinol 1989; 122: 409–420.

    Article  CAS  PubMed  Google Scholar 

  54. Takada T, Nakagawa M, Ura N, Kaide J, Yoshida H, Shimamoto K . Endogenous immunoreactive ouabain-like and digoxin-like factors in reduced renal mass hypertensive rats. Hypertens Res 1998; 21: 193–199.

    Article  CAS  PubMed  Google Scholar 

  55. Juncos R, Hong NJ, Garvin JL . Differential effects of superoxide on luminal and basolateral Na+/H+ exchange in the thick ascending limb. Am J Physiol 2006; 290: R79–R83.

    CAS  Google Scholar 

  56. Taylor NE, Cowley Jr AW . Effect of renal medullary H2O2 ion salt-induced hypertension and renal injury. Am J Physiol 2005; 289: R1573–R1579.

    CAS  Google Scholar 

  57. Taylor NE, Glocka P, Liang M, Cowley Jr AW . NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats. Hypertension 2006; 47: 692–698.

    Article  CAS  PubMed  Google Scholar 

  58. Hu L, Manning Jr RD . Role of nitric oxide in regulation of long-term pressure-natriuresis relationship in Dahl rats. Am J Physiol 1995; 268: H2375–H2383.

    CAS  PubMed  Google Scholar 

  59. Campese VM, Tawadrous M, Bigazzi R, Bianchi S, Mann AS, Oparil S et al. Salt intake and plasma natriuretic peptide and nitric oxide in hypertension. Hypertension 1996; 28: 335–340.

    Article  CAS  PubMed  Google Scholar 

  60. Fenoy FJ, Ferrer P, Carbonell L, Garcia-Salom M . Role of nitric oxide on papillary blood flow and pressure natriuresis. Hypertension 1995; 25: 408–414.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kelley Martin, RD, MS, General Clinical Research Nutritionist, for her extraordinary efforts in assisting volunteers to comply with the study diets. We also thank the entire General Clinical Research Center staff for their dedication to the integrity of the research protocol as well as Kim Edwards for administrative support. This research was supported by grants from the National Institutes of Health (HL58794, HL04290 (BME); GM15431, DK48831 (JDM)), MD00267 from the National Center for Minority Health and Disparities and the General Clinical Research Center (RR-01070) from the Division of Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B M Egan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Solaiman, Y., Jesri, A., Zhao, Y. et al. Low-sodium DASH reduces oxidative stress and improves vascular function in salt-sensitive humans. J Hum Hypertens 23, 826–835 (2009). https://doi.org/10.1038/jhh.2009.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2009.32

Keywords

This article is cited by

Search

Quick links