Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Metabolic endotoxemia and saturated fat contribute to circulating NGAL concentrations in subjects with insulin resistance

Abstract

Objective:

Lipocalin-2 (neutrophil gelatinase-associated lipocalin, NGAL) is an innate immune system protein that has been linked to insulin resistance and obesity, but the mechanisms behind these associations are poorly known. We hypothesized that endotoxin (lipopolysaccharide, LPS) and fat intake were in the background of these associations.

Design:

We studied four cohorts: (1) a cross-sectional study in 194 subjects; (2) the changes in NGAL concentration induced by diet and weight loss in 36 obese women (with circadian rhythm in 8 of them); (3) the effects of acute fat intake on circulating NGAL concentration in 42 morbidly obese subjects; and (4) LPS-induced NGAL secretion ex vivo (whole blood and adipose tissue explants).

Results:

Serum NGAL concentration was significantly associated with fasting triglycerides and LPS-binding protein in patients with type 2 diabetes. In obese subjects, the intake of saturated fatty acids was the factor that best explained the variance of NGAL changes after weight loss (contributing independently to 14% of NGAL variance). In fact, weight loss significantly changed the circadian rhythm of NGAL. The acute increase in circulating NGAL after fat overload was significantly associated with fasting insulin (r=0.52, P<0.001), homeostasis model assessment of insulin resistance (HOMA-IR) (r=0.36, P=0.02) and post-load triglyceride concentrations (r=0.38, P=0.018). LPS-induced NGAL secretion from adipose tissue explants did not change significantly, but LPS led to a significant increase in NGAL concentration in the whole blood obtained from patients with type 2 diabetes.

Conclusion:

Metabolic endotoxemia and saturated fat might contribute to circulating NGAL concentration in patients with insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.

    Article  CAS  PubMed  Google Scholar 

  2. Tilg H, Moschen AR . Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006; 6: 772–783.

    Article  CAS  PubMed  Google Scholar 

  3. Shoelson SE, Herrero L, Naaz A . Obesity, inflammation, and insulin resistance. Gastroenterology 2007; 132: 2169–2180.

    Article  CAS  PubMed  Google Scholar 

  4. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pickup JC, Crook MA . Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998; 41: 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  6. Festa A, D’Agostino Jr R, Howard G, Mykkänen L, Tracy RP, Haffner SM . Chronic subclinical inflammation as part of the insulin resistance syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102: 42–47.

    Article  CAS  PubMed  Google Scholar 

  7. Ridker PM, Buring JE, Cook NR, Rifai N . C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 2003; 107: 391–397.

    Article  PubMed  Google Scholar 

  8. Fernandez-Real JM, Ricart W . Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003; 24: 278–301.

    Article  CAS  PubMed  Google Scholar 

  9. Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N . Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 1993; 268: 10425–10432.

    CAS  PubMed  Google Scholar 

  10. Goetz DH, Willie ST, Armen RS, Bratt T, Borregaard N, Strong RK . Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochemistry 2000; 39: 1935–1941.

    Article  CAS  PubMed  Google Scholar 

  11. Bratt T, Ohlson S, Borregaard N . Interactions between neutrophil gelatinase-associated lipocalin and natural lipophilic ligands. Biochim Biophys Acta 1999; 1472: 262–269.

    Article  CAS  PubMed  Google Scholar 

  12. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004; 432: 917–921.

    Article  CAS  PubMed  Google Scholar 

  13. Meheus LA, Fransen LM, Raymackers JG, Blockx HA, Van Beeumen JJ, Van Bun SM et al. Identification by microsequencing of lipopolysaccharide-induced proteins secreted by mouse macrophages. J Immunol 1993; 151: 1535–1547.

    CAS  PubMed  Google Scholar 

  14. Bu DX, Hemdahl AL, Gabrielsen A, Fuxe J, Zhu C, Eriksson P et al. Induction of neutrophil gelatinase-associated lipocalin in vascular injury via activation of nuclear factor-kappaB. Am J Pathol 2006; 169: 2245–2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cowland JB, Muta T, Borregaard N . IL-1beta-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IkappaB-zeta. J Immunol 2006; 176: 5559–5566.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, Tso AW et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 2007; 53: 34–41.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, Tso AW et al. The adipokine lipocalin 2 is regulated by obesity and promote insulin resistance. Diabetes 2007; 56: 2533–2540.

    Article  Google Scholar 

  18. Lee JY, Hwang DH . The modulation of inflammatory gene expression by lipids: mediation through Toll-like receptors. Mol Cells 2006; 21: 174–185.

    CAS  PubMed  Google Scholar 

  19. Song MJ, Kim KH, Yoon JM, Kim JB . Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 2006; 346: 739–745.

    Article  CAS  PubMed  Google Scholar 

  20. Fernández-Real JM, López-Bermejo A, Vendrell J, Ferri MJ, Recasens M, Ricart W . Burden of infection and insulin resistance in healthy middle-aged men. Diabetes Care 2006; 29: 1058–1064.

    Article  PubMed  Google Scholar 

  21. Ceriello A, Motz E . Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004; 24: 816–823.

    Article  CAS  PubMed  Google Scholar 

  22. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761–1772.

    Article  CAS  PubMed  Google Scholar 

  23. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57: 1470–1481.

    Article  CAS  PubMed  Google Scholar 

  24. Fernández-Real JM, Ricart-Engel W, Arroyo E, Balançá R, Casamitjana-Abella R, Cabrero D et al. Serum ferritin as a component of the insulin resistance syndrome. Diabetes Care 1998; 21: 62–68.

    Article  PubMed  Google Scholar 

  25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  PubMed  Google Scholar 

  26. Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 2000; 23: 57–63.

    Article  CAS  PubMed  Google Scholar 

  27. Beckmann I, Efraim SB, Vervoort M, Visser W, Wallenburg HC . Tumor necrosis factor-α in whole blood cultures of preclamptic patients and healthy pregnant. Hypertens Pregnancy 2004; 23: 319–329.

    Article  CAS  PubMed  Google Scholar 

  28. Langezaal I, Coecke S, Hartung T . Whole blood cytokine response as a measure of immunotoxicity. Toxicology In Vitro 2001; 15: 313–318.

    Article  CAS  PubMed  Google Scholar 

  29. Fain JN, Bahouth SW, Madan AK . TNF-alpha release by the non-fat cells of human adipose tissue. Int J Obes Relat Metab Disord 2004; 28: 616–622.

    Article  CAS  PubMed  Google Scholar 

  30. Juge-Aubry CE, Somm E, Giusti V, Pernin A, Chicheportiche R, Verdumo C et al. Adipose tissue is a major source of interleukin-1 receptor antagonist: upregulation in obesity and inflammation. Diabetes 2003; 52: 1104–1110.

    Article  CAS  PubMed  Google Scholar 

  31. Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P . Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr 2002; 75: 767–772.

    Article  CAS  PubMed  Google Scholar 

  32. Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003; 52: 2882–2887.

    Article  CAS  PubMed  Google Scholar 

  33. Huang H, Liu T, Rose JL, Stevens RL, Hoyt DG . Sensitivity of mice to lipopolysaccharide is increased by a high saturated fat and cholesterol diet. J Inflamm (Lond) 2007; 4: 22.

    Article  Google Scholar 

  34. Erridge C, Attina T, Spickett CM, Webb DJ . A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 2007; 86: 1286–1292.

    Article  CAS  PubMed  Google Scholar 

  35. Krogh-Madsen R, Plomgaard P, Akerstrom T, Møller K, Schmitz O, Pedersen BK . Effect of short-term intralipid infusion on the immune response during low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab 2008; 294: E371–E379.

    Article  CAS  PubMed  Google Scholar 

  36. Vives-Pi M, Somoza N, Fernández-Alvarez J, Vargas F, Caro P, Alba A et al. Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin Exp Immunol 2003; 133: 208–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin Y, Rajala MW, Berger JP, Moller DE, Barzilai N, Scherer PE . Hyperglycemia-induced production of acute phase reactants in adipose tissue. J Biol Chem 2001; 276: 42077–42083.

    Article  CAS  PubMed  Google Scholar 

  38. Manco M, Fernández-Real JM, Valera-Mora ME, Déchaud H, Nanni G, Tondolo V et al. Massive weight loss decreases corticosteroid-binding globulin levels and increases free cortisol in healthy obese patients: an adaptive phenomenon? Diabetes Care 2007; 30: 1494–1500.

    Article  CAS  PubMed  Google Scholar 

  39. Mingrone G, Manco M, Granato L, Calvani M, Scarfone A, Mora EV et al. Leptin pulsatility in formerly obese women. FASEB J 2005; 19: 1380–1382.

    Article  CAS  PubMed  Google Scholar 

  40. Manco M, Fernandez-Real JM, Equitani F, Vendrell J, Valera Mora ME, Nanni G et al. Effect of massive weight loss on inflammatory adipocytokines and the innate immune system in morbidly obese women. J Clin Endocrinol Metab 2007; 92: 483–490.

    Article  CAS  PubMed  Google Scholar 

  41. Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T . Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab 1998; 83: 2907–2910.

    CAS  PubMed  Google Scholar 

  42. Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X . The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol 2008; 22: 1416–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by research grants from the Ministerio de Educación y Ciencia (SAF2008-02073) and CIBEROBN Fisiopatología de la Obesidad y Nutrición.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Fernández-Real.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website (http://www.nature.com/ijo)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Navarrete, J., Manco, M., Ibáñez, J. et al. Metabolic endotoxemia and saturated fat contribute to circulating NGAL concentrations in subjects with insulin resistance. Int J Obes 34, 240–249 (2010). https://doi.org/10.1038/ijo.2009.242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.242

Keywords

This article is cited by

Search

Quick links