Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gastrointestinal satiety signals

Abstract

Obesity constitutes a major global healthcare challenge. The morbidity, mortality, and socioeconomic costs of obesity are considerable. No currently available medical therapy delivers substantial, sustainable weight loss. The need to better understand the mechanisms of appetite regulation is therefore clear. Over the last 20 years, peptide hormones released from the gastrointestinal tract in response to nutritional stimuli have come to be recognized as important physiological regulators of appetite. Hormones such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1 and oxyntomodulin are thought to act as postprandial satiety signals. These physiological pathways of appetite control offer a promising basis for anti-obesity therapies. Here, we briefly review the state of current knowledge of these hormones' actions on brain appetite circuits, and prospects for future research and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. World Health Organization. Global Strategy on Diet, Physical Activity and Health. World Health Organization: Geneva, Switzerland, 2004.

  2. Allison DB, Saunders SE . Obesity in North America. An overview. Med Clin North Am 2000; 84: 305–332.

    Article  CAS  Google Scholar 

  3. Kaplan LM . Pharmacological therapies for obesity. Gastroenterol Clin North Am 2005; 34: 91–104.

    Article  Google Scholar 

  4. Thearle M, Aronne LJ . Obesity and pharmacologic therapy. Endocrinol Metab Clin North Am 2003; 32: 1005–1024.

    Article  CAS  Google Scholar 

  5. Stanley S, Wynne K, McGowan B, Bloom S . Hormonal regulation of food intake. Physiol Rev 2005; 85: 1131–1158.

    Article  CAS  Google Scholar 

  6. Schwartz GJ . Integrative capacity of the caudal brainstem in the control of food intake. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1275–1280.

    Article  CAS  Google Scholar 

  7. Ellacott KL, Cone RD . The role of the central melanocortin system in the regulation of food intake and energy homeostasis: lessons from mouse models. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1265–1274.

    Article  CAS  Google Scholar 

  8. Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 2005; 146: 2369–2375.

    Article  CAS  Google Scholar 

  9. Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res 2005; 1044: 127–131.

    Article  CAS  Google Scholar 

  10. Le Roux CW, Neary NM, Halsey TJ, Small CJ, Martinez-Isla AM, Ghatei MA et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab 2005; 90: 4521–4524.

    Article  CAS  Google Scholar 

  11. Gibbs J, Young RC, Smith GP . Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973; 84: 488–495.

    Article  CAS  Google Scholar 

  12. Badman MK, Flier JS . The gut and energy balance: visceral allies in the obesity wars. Science 2005; 307: 1909–1914.

    Article  CAS  Google Scholar 

  13. Chaudhri O, Small C, Bloom S . Gastrointestinal hormones regulating appetite. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1187–1209.

    Article  CAS  Google Scholar 

  14. Korner J, Bessler M, Cirilo LJ, Conwell IM, Daud A, Restuccia NL et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab 2005; 90: 359–365.

    Article  CAS  Google Scholar 

  15. Le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006; 243: 108–114.

    Article  Google Scholar 

  16. Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CM, Meeran K et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379: 69–72.

    Article  CAS  Google Scholar 

  17. Baggio LL, Huang Q, Brown TJ, Drucker DJ . Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 2004; 127: 546–558.

    Article  CAS  Google Scholar 

  18. Verdich C, Flint A, Gutzwiller JP, Naslund E, Beglinger C, Hellstrom PM et al. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001; 86: 4382–4389.

    CAS  PubMed  Google Scholar 

  19. Dakin CL, Small CJ, Batterham RL, Neary NM, Cohen MA, Patterson M et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 2004; 145: 2687–2695.

    Article  CAS  Google Scholar 

  20. Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 2003; 88: 4696–4701.

    Article  CAS  Google Scholar 

  21. Wynne K, Park AJ, Small CJ, Patterson M, Ellis SM, Murphy KG et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 2005; 54: 2390–2395.

    Article  CAS  Google Scholar 

  22. Wynne K, Park AJ, Small CJ, Meeran K, Ghatei MA, Frost GS et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (London) 2006; 30: 1729–1736.

    Article  CAS  Google Scholar 

  23. Green BD, Flatt PR, Bailey CJ . Dipeptidyl peptidase IV (DPP IV) inhibitors: A newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc Dis Res 2006; 3: 159–165.

    Article  Google Scholar 

  24. Boggiano MM, Chandler PC, Oswald KD, Rodgers RJ, Blundell JE, Ishii Y et al. PYY3-36 as an anti-obesity drug target. Obes Rev 2005; 6: 307–322.

    Article  CAS  Google Scholar 

  25. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 2002; 418: 650–654.

    Article  CAS  Google Scholar 

  26. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 2003; 349: 941–948.

    Article  CAS  Google Scholar 

  27. Pittner RA, Moore CX, Bhavsar SP, Gedulin BR, Smith PA, Jodka CM et al. Effects of PYY[3–36] in rodent models of diabetes and obesity. Int J Obes Relat Metab Disord 2004; 28: 963–971.

    Article  CAS  Google Scholar 

  28. Sileno AP, Brandt GC, Spann BM, Quay SC . Lower mean weight after 14 days intravenous administration peptide YY(3–36) (PYY(3–36)) in rabbits. Int J Obes (London) 2006; 30: 68–72.

    Article  CAS  Google Scholar 

  29. Koegler FH, Enriori PJ, Billes SK, Takahashi DL, Martin MS, Clark RL et al. Peptide YY(3–36) inhibits morning, but not evening, food intake and decreases body weight in rhesus macaques. Diabetes 2005; 54: 3198–3204.

    Article  CAS  Google Scholar 

  30. Degen L, Oesch S, Casanova M, Graf S, Ketterer S, Drewe J et al. Effect of peptide YY3-36 on food intake in humans. Gastroenterology 2005; 129: 1430–1436.

    Article  CAS  Google Scholar 

  31. Brandt G, Park A, Wynne K, Sileno A, Jazrawi R, Woods A et al. Nasal peptide YY3-36: Phase 1 dose ranging and safety studies in healthy human subjects. 86th Annual Meeting of the Endocrine Society (ENDO 2004). New Orleans, LA 2004.

  32. Lassmann V, Vague P, Vialettes B, Simon MC . Low plasma levels of pancreatic polypeptide in obesity. Diabetes 1980; 29: 428–430.

    Article  CAS  Google Scholar 

  33. Fujimoto S, Inui A, Kiyota N, Seki W, Koide K, Takamiya S et al. Increased cholecystokinin and pancreatic polypeptide responses to a fat-rich meal in patients with restrictive but not bulimic anorexia nervosa. Biol Psychiatry 1997; 41: 1068–1070.

    Article  CAS  Google Scholar 

  34. Jorde R, Burhol PG . Fasting and postprandial plasma pancreatic polypeptide (PP) levels in obesity. Int J Obes 1984; 8: 393–397.

    CAS  PubMed  Google Scholar 

  35. Wisen O, Bjorvell H, Cantor P, Johansson C, Theodorsson E . Plasma concentrations of regulatory peptides in obesity following modified sham feeding (MSF) and a liquid test meal. Regul Pept 1992; 39: 43–54.

    Article  CAS  Google Scholar 

  36. Asakawa A, Inui A, Ueno N, Fujimiya M, Fujino MA, Kasuga M . Mouse pancreatic polypeptide modulates food intake, while not influencing anxiety in mice. Peptides 1999; 20: 1445–1448.

    Article  CAS  Google Scholar 

  37. Batterham RL, Le Roux CW, Cohen MA, Park AJ, Ellis SM, Patterson M et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab 2003; 88: 3989–3992.

    Article  CAS  Google Scholar 

  38. Zipf WB, O'Dorisio TM, Cataland S, Dixon K . Pancreatic polypeptide responses to protein meal challenges in obese but otherwise normal children and obese children with Prader–Willi syndrome. J Clin Endocrinol Metab 1983; 57: 1074–1080.

    Article  CAS  Google Scholar 

  39. Neary NM, Small CJ, Druce MR, Park AJ, Ellis SM, Semjonous NM et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 2005; 146: 5120–5127.

    Article  CAS  Google Scholar 

  40. Ogihara T, Matsuzaki M, Matsuoka H, Shimamoto K, Shimada K, Rakugi H et al. The combination therapy of hypertension to prevent cardiovascular events (COPE) trial: rationale and design. Hypertens Res 2005; 28: 331–338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Bloom.

Additional information

Conflict of interest

Stephen R Bloom received consulting fees from Thiakis, lecture fees from Astra-Zeneca and Novartis, grant support from Medtronics, and is the named inventor for PYY and Oxyntomodulin patents and patent applications. The remaining authors have declared no financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhri, O., Field, B. & Bloom, S. Gastrointestinal satiety signals. Int J Obes 32 (Suppl 7), S28–S31 (2008). https://doi.org/10.1038/ijo.2008.235

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.235

Keywords

This article is cited by

Search

Quick links