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Ethnic differences in genetic predisposition
to hypertension

Norihiro Kato

Recently, large-scale meta-analyses of genome-wide association (GWA) studies have identified a number of loci significantly

associated with systolic and/or diastolic blood pressure (BP). Most of the GWA studies reported to date were conducted in

populations of European descent. Given the appreciable ethnic differences in clinical presentation of hypertension, studies

in non-European populations allow us to assess the relevance of the findings in Europeans to other ethnic groups and to

potentially discover novel variants. Before the GWA scan era, the presence of racial or ethnic differences has been widely

recognized for response to antihypertensive therapies, salt sensitivity and impact of obesity on developing hypertension. Despite

a limited number of genetic loci that have been proven to show substantial ethnic differences, we can assume four possible

genetic mechanisms—(1) absence of target variants in other ethnic groups; (2) presence of allelic heterogeneity; (3) difference

in linkage disequilibrium structure; and (4) gene–gene and gene–environment interactions. Considering such a number of

potential sources of heterogeneity, we should be cautious about claiming the presence of genuine ethnic differences in genetic

susceptibility to BP-related traits or hypertension. Approximately a quarter of BP-associated loci that have been reported in

four meta-analyses of GWA studies (i.e., 8 out of 34 loci) appear to be common across three ethnic groups—Europeans, east

Asians and south Asians. ‘Transethnic’ BP meta-analysis will be useful not only for revealing novel susceptibility loci and

pathophysiological pathways but also for facilitating the fine mapping of common causal variants.
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INTRODUCTION

Genetic, environmental and demographic factors and their interaction
determine an individual’s risk for hypertension. Despite considerable
efforts to investigate the genetic basis of hypertension, or elevated
blood pressure (BP) levels,1,2 the inherently complex nature hampered
progress in the elucidation of the genes involved and yielded little
success until 2009 when two consortia-based meta-analyses of
genome-wide association (GWA) studies involving 30 000–40 000
samples in the discovery stage identified a total of 13 independent
loci significantly associated with BP in populations of European
descent.3,4 Subsequently, meta-analyses of GWA studies in east
Asians5 and in a larger consortium combining the Global BPgen
and CHARGE consortia6 identified a total of 21 additional loci. The
large part of the GWA studies reported to date were conducted in
populations of European descent.3,4,6,7 Given the appreciable ethnic
differences in clinical presentation of hypertension,8 studies in non-
European populations allow us to assess the relevance of the findings
in Europeans to other ethnic groups and to potentially discover novel
variants. In addition, with the advent of massive genome-wide
characterization of single nucleotide polymorphisms (SNPs), for
example, 4650 000 SNPs, it has become clear that diversity is

greater within than between races,9 further indicating the presence
of substantial genomic differences between ethnic (or racial) groups.

In the present article, I review ethnic differences known to exist for
hypertension-related traits and propose possible genetic mechanisms
underlying such ethnic differences. Then, I describe some findings
from the meta-analyses of GWA studies on BP and hypertension thus
far reported.3–6

ETHNIC DIFFERENCES IN HYPERTENSION-RELATED TRAITS

Antihypertensive drug response
Racial or ethnic differences in response to antihypertensive therapies
have been widely recognized during the past decades.10 In the early
1980’s, clinical differences in response to the BP-lowering effects of
b-blockers and diuretics were noted between whites (those of European
descent) and blacks (those of African descent) based on several
reports including a Veterans Administration Cooperative Trial,11

which suggested that whites had a better antihypertensive response
to b-blockers than blacks, whereas blacks had a slightly better
response to diuretics than whites. Accordingly, in 1988, the fourth
report of the Joint National Committee on the Detection, Evalua-
tion and Treatment of High BP recommended consideration of
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race/ethnicity when selecting antihypertensive therapy.12 In 2004, a
meta-analysis of 15 clinical trials that had been published between
1984 and 1998 showed that there were consistent, although modest,
differences in responses between whites and blacks as depicted in
Figure 1.10,13 In general, it appears that blacks respond more favorably
to diuretics or calcium channel blockers, whereas whites respond to
all classes of antihypertensive drugs similarly. Among Asians and
Hispanics, limited data are available on the corresponding
antihypertensive drug response, in regard to ethnic comparison
with whites.14

The prevalence of hypertension has been known to be higher
among blacks than whites.8,15 In addition, excessive target organ
damages such as stroke and heart failure have been reported among
blacks in the USA;16 that is, overall mortality due to hypertension and
its consequences is 4–5 times more likely in blacks than in whites.
These hypertension-related target organ damages result from a
combination of genetic and environmental factors. Of note, Liggett
et al.17 reported a pharmacogenomic interaction between b-blocker
treatment for heart failure and a non-synonymous polymorphism,
Leu41Gln, of the G protein-coupled receptor kinase 5 (GRK5) gene,
which desensitizes b-adrenergic receptors. A ‘protective’ GRK5-Leu41
variant was shown to be common in African Americans (B10-fold
higher than in European Americans) and to protect against death or
cardiac transplantation among African American patients with heart

failure, in contrast to its higher risk among blacks.18 Moreover,
the GRK5-Leu41 allele is not disproportionately represented in
individuals with cardiac disease; that is, the allele frequencies are
0.23 among unaffected individuals, 0.24 among patients with heart
failure and 0.28 among patients with acute ischemia. Thus, it has been
concluded that enhanced b-adrenergic receptor desensitization of
excessive catecholamine signaling by GRK5-Leu41 provides a ’genetic
b-blockade’ that improves survival in African Americans with heart
failure, suggesting the presence of within-population diversity in
response to organ protection therapies, independent of disease
etiology.

Salt sensitivity
It has long been recognized that dietary habits such as salt intake have
an important role in the development of hypertension. A number of
epidemiological studies have shown that the prevalence of hyperten-
sion increases with habitual salt intake or urinary sodium chloride
excretion at the population level in various parts of the world.19

Nevertheless, substantial heterogeneity has been thought to exist in
the individual BP response to changes in sodium balance, often
referred to as salt sensitivity.20 Although there are no uniform criteria
for measuring salt sensitivity as a function of BP change or for
dichotomizing it to separate people into salt-sensitive and salt-
resistant individuals, salt sensitivity has been assumed to be more
prevalent in blacks than in whites.21 To support this, Chun et al.22

showed that there were distinct ethnic differences in renal handling of
calcium and magnesium basally and in response to furosemide (loop
diuretics) that were consistent with a more pronounced activity of
sodium uptake by the Na-K-2Cl cotransporter in the thick ascending
limb of the kidney in blacks, which could result in a greater tendency
to retain sodium than whites.

It has been reported that a number of candidate gene variants, for
example, those involved in the renin–angiotensin–aldosterone system
and ion channels, are associated with salt sensitivity,23 although they
are difficult to replicate and remain largely inconclusive.24

Impacts of obesity on hypertension
Racial and ethnic differences have also been assumed to exist in terms
of the components and impacts of genetic factors for obesity, and
traits or disorders related to obesity, for example, type 2 diabetes.25,26

Moreover, from an epidemiological viewpoint, it has been demon-
strated that the overall impact of obesity on hypertension is greater in
Chinese (east Asians) than in blacks and whites;27 that is, the increase
in the hypertension incidence associated with an one-unit increase
in body mass index over B8 years of follow-up was 2.5, 1.8 and
1.7 percentage points for Chinese, blacks and whites, respectively.
Although a combination of genetic, environmental and social
differences between the ethnic groups may contribute to such
ethnic differences, little is known about the underlying biological
mechanisms at present.

POSSIBLE GENETIC MECHANISMS UNDERLYING ETHNIC

DIFFERENCES

Thus far, only a limited number of genetic loci have been reported to
show robust evidence supporting the presence of ethnic differences in
BP- or hypertension-associated loci.3–6 Nevertheless, we can assume
four possible genetic mechanisms as explained later.

To facilitate readers’ understanding, basic concepts of genetic
association are illustrated in Figure 2. It is assumed that a causal
mutation was first introduced into a population at some historical
point of time upon a certain phylogenetic cluster of the relevant
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Figure 1 Ethnic differences in pooled estimates of decrement in BP with

four antihypertensive drugs. The pooled estimates of BP reduction are

shown for SBP (upper panel) and DBP (lower panel) separately. The data

were derived from the article by Johnston9 (originally from Brewsler

et al.12). ACE-I, angiotensin converting enzyme inhibitors; CCBs, calcium

channel blockers.
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population. At a particular susceptibility locus (or gene), multiple
mutations may have occurred on different phylogenetic clusters,
which result in allelic heterogeneity, the phenomenon in which
different mutations at the same locus (or gene) cause the same
disorder. Without a priori knowledge about the causal variants or
mutations, people attempt to identify genetic ‘markers’ such as SNPs,
which help us to capture the association signals via linkage disequili-
brium (LD), the phenomenon in which alleles of two different loci (or
genes) occur together more often than would be predicted by chance,
indicating that the two alleles are physically close on the DNA strand.
A set of SNPs and mutations in strong LD tend to be inherited
together by forming haplotypes. On performing GWA studies, we
normally assay not all SNPs but a subset of SNPs that can be chosen
by considering the LD structure in a particular chromosomal region
(Figure 3). If the pattern and strength of LD between the SNPs (and
mutations) in the target region are similar and the causal variants are
commonly present among the different ethnic groups, the association
in question is detectable at the SNP markers (e.g., SNP1 for mutation
1 and SNP 2 for mutation 2 in Figure 2) across the populations.

Absence of target variants in other ethnic groups
It is possible that there is a common causal variant in one ethnic
group but not in another, because the variant occurred and/or spread

almost exclusively among the individuals belonging to the former
ethnic group, in which the resultant genetic association can be
identified via GWA studies.

This has turned out to be the case with a locus associated with BP-
related traits, which we have recently identified near the ALDH2 gene
at 12q24.13 in east Asians.5 This association is likely driven by a
known functional variant rs671 at ALDH2, which is common in east
Asians and has been reported to associate with hypertension
principally through modification of alcohol consumption.28–30 In
populations of European descent, on the other hand, one of the BP
loci has been identified near the SH2B3 gene at 12q24.13.3,4,6 The
SNP at 12q24.13 associated with BP in Europeans (rs3184504 at the
SH2B3 locus) is not polymorphic in east Asians, and the SNP
associated with BP in east Asians (rs671 at the ALDH2 locus) is
not polymorphic in Europeans. Here, of particular note is the fact
that we found modest signatures of recent selection in the corres-
ponding region,5 which were separately reported in Europeans.31

Eight common SNPs (minor allele frequency¼ 0.23–0.24 in the
Japanese population) appeared to identify a common haplotype
(H5), which arose on a haplotype (H4) that is common in east
Asians but is absent in Europeans and is rare in Africans (Figure 4),
spanning almost the same interval length (0.7 Mb) as that of
suggestive natural selection at 12q24.5 Thus, phylogenetic analysis
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Figure 2 Illustration of basic concepts of genetic association from the viewpoint of population phylogeny. Coalescent genealogies (blue lines) are used to

infer the demographic histories of sampled population, which is assumed to have differentiated into four clusters—A, B, C and D. Wild-type (or ancestral)

haplotypes are preserved in the cluster A, disease susceptibility haplotypes belong to the clusters B and C, and neutral (in terms of disease susceptibility)

but relatively new haplotypes are in the cluster D. Observed sequence differences (SNPs and mutations) are indicated by colored symbols: circle, square,

triangle and asterisks.
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Figure 3 Illustration of LD relation between SNPs (upper panel) and regional P-value plots for SNP-trait association (lower panel). In an assumed

chromosomal region, a subset of SNPs (dots colored in black) are assayed, whereas the remaining, unassayed SNPs (dots colored in gray) are imputed. LD

coefficient between an unknown causal variant and an SNP is drawn with the shaded colors.
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Figure 4 Phylogenetic relation of population-specific SNPs to ancestral haplotype on 12q24 involving the ALDH2 locus.3–6 Two phylogenetically-

independent haplotypes—H5 and H7—are assumed to affect BP in the east Asian and European populations, respectively.3–5 There are several clusters of

SNPs with tight LD at 112.2–112.9 Mb (Build 37.3 drawn from Ensembl browser, http://www.ensembl.org/Homo_sapiens/), in which modest signatures of

natural selection were detected5 as indicated by a horizontal arrow (a). Here, positions of east Asian-specific (rs671) and European-specific (rs11065987)

SNPs are also depicted in the top panel (a). For clusters of SNPs located in this interval that shows limited recombination across the three populations—

east Asian (Japanese), Caucasian (or whites) and blacks, we chose representative SNPs of each cluster and inferred their phylogeny (b) and haplotypes (c).

rs11065987 and SH2B3 rs3184504 belong to the same cluster. Figures and tables are drawn from Supplementary materials of Kato et al.5

Ethnic difference in hypertension genetics
N Kato

577

Hypertension Research



suggests that rs671, which is a possible, although not conclusive,
causal variant in east Asians, is not responsible for the BP-association
identified in the overlapping chromosomal region (near SH2B3) in
populations of European descent. Although positive selection has
been presumed to have a role in increasing the frequencies of alleles
that elevate some autoimmune disease risk,32 this possibility remains
to be further explored for alleles (or variants) associated with
hypertension.

Presence of allelic heterogeneity
Recent large-scale meta-analyses of GWA studies have reveled that
allelic heterogeneity is not rare in the human genetics of common
traits such as height and type 2 diabetes.33,34 As for BP traits,
significant association was identified at 12q24.21 in both Europeans
and east Asians,4,5 although the associated SNPs (e.g., rs2384550 in
Europeans and rs35444 in east Asians) were not in LD with each
other. As these two index SNPs are located in the intergenic region
(350-kb and 550-kb distant from the closest gene, TBX3), it remains
unknown whether they could exert genetic effects on the same gene
(e.g., TBX3) or on different genes or pathways. In the former case
(i.e., genetic effects on the same gene), besides allelic heterogeneity,
there is another issue that each of the two index SNPs is ‘specific’ to
an individual ethnic group, at least, in regard to genetic impacts or
the feasibility of identifying genetic association.

Difference in LD structure
The common SNPs under investigation in GWA studies may not
themselves contribute to phenotypic variation. Instead, it is usually
assumed that these characterized variants are in high LD with
common ‘causal’ variants. As far as the lengths and patterns of LD
near the causal variants are similar across the various populations, the
common causal variants can be tagged by use of standard GWA scan
platforms (or SNP arrays). However, it has become known that there
are substantial cross-population differences in LD structure in some
chromosomal regions; where the same set of tagging SNPs is not
useful across the various populations in order to identify the common
causal variants, if any.35 The development of sophisticated algorithms
for imputation (estimation of some unmeasured genotypes by using
the LD structure in a region, which is drawn from the data in a
reference panel)36–38 and the application of dense, reference SNP
marker sets, that is, the 1000 Genomes Project data (http://
www.1000genomes.org/), for imputation help to reduce the risk of
missing such common association signals due to cross-population
differences in LD structure.35 Even so, imputation accuracy is still
limited, in particular, for relatively rare variants, unless they are
directly genotyped.39

Gene–gene and gene–environment interactions
Even the causal variants with ‘cosmopolitan’ effects may show racial
or ethnic differences in the statistical power to identify disease
association, which are largely influenced by the hidden effects of
gene–gene or gene–environment interaction.40 Gene–gene interaction
has been frequently found to exist between loci in model organisms.41

However, it can be difficult to detect42 and little robust evidence has
been provided for the human genetics of hypertension and/or BP
traits. Assuming two interacting loci, their combined effects can be
larger than and/or in the opposite direction to the individual effects of
the loci. Environment may also have a substantial role in determining
the effect size of a given susceptibility locus.40,42 For example, it has
been reported that allele frequencies for probable functional variants
in BP-trait-associated candidate genes (such as GNB3 and AGT) are

correlated with latitude, which is hypothesized to result from
differential exposure to selection pressure (by factors such as higher
salt intake and colder environments) since the out-of-Africa
expansion of human populations.43

FINDINGS FROM GWA STUDIES OF BP TRAITS

Given a number of sources of heterogeneity,35,40,42 we should be
cautious about claiming the presence of genuine ethnic differences in
genetic effects of susceptibility to BP traits or hypertension. The
factors to be considered include sample size, LD structure and the
potential impact of gene–gene and gene–environment interactions in
the individual population. Although further investigation is required,
an arbitrary picture of cross-population difference (or overlapping)
can be depicted in Figure 5 as for a total of 34 BP-trait-associated loci
that have been reported in four meta-analyses of GWA studies3–6;
these were originally conducted in populations of European and east
Asian descent and thereafter the signals of association were subjected
to evaluation (i.e., replication) in other ethnic groups.

Approximately a quarter of the loci (8 out of 34) appear to be
common across three ethnic groups—Europeans, east Asians and
south Asians. Here, because the tested associations could not be
generally reproducible in African Americans,6 they were not included
in this cross-population comparison. Among the remaining 26 loci,
index SNPs showed BP-trait association in only two ethnic groups or
in a single ethnic group, which was estimated as 38%, 13 each out of
34 loci (Figure 5).

Among the GWA scans performed to date, there has been a strong
bias towards samples of European descent. The importance of
extending analyses to samples from non-European populations with
differing mutational and demographic histories has been empha-
sized.42 ‘Transethnic’ meta-analysis is currently being planned and will
allow for a better chance to reveal novel susceptibility loci and
pathophysiological pathways, and may also facilitate the fine mapping
of common causal variants by utilizing ethnic differences in LD
structure.44
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