Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations

Abstract

Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is required for the biosynthesis of photoreceptor phosphodiesterase (PDE). Gene defects in AIPL1 cause a heterogeneous set of conditions ranging from Leber's congenital amaurosis (LCA), the severest form of early-onset retinal degeneration, to milder forms such as retinitis pigmentosa (RP) and cone-rod dystrophy. In mice, null and hypomorphic alleles cause retinal degeneration similar to human LCA and RP, respectively. Thus these mouse models represent two ends of the disease spectrum associated with AIPL1 gene defects in humans. We evaluated whether adeno-associated virus (AAV)-mediated gene replacement therapy in these models could restore PDE biosynthesis in rods and cones and thereby improve photoreceptor survival. We validated the efficacy of human AIPL1 (isoform 1) replacement gene controlled by a promoter derived from the human rhodopsin kinase (RK) gene, which is active in both rods and cones. We found substantial and long-term rescue of the disease phenotype as a result of transgene expression. This is the first gene therapy study in which both rods and cones were targeted successfully with a single photoreceptor-specific promoter. We propose that the vector and construct design used in this study could serve as a prototype for a human clinical trial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sohocki MM, Bowne SJ, Sullivan LS, Blackshaw S, Cepko CL, Payne AM et al. Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat Genet 2000; 24: 79–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ramamurthy V, Niemi GA, Reh TA, Hurley JB . Leber congenital amaurosis linked to AIPL1: a mouse model reveals destabilization of cGMP phosphodiesterase. Proc Natl Acad Sci USA 2004; 101: 13897–13902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu X, Bulgakov OV, Wen XH, Woodruff ML, Pawlyk B, Yang J et al. AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc Natl Acad Sci USA 2004; 101: 13903–13908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sohocki MM, Perrault I, Leroy BP, Payne AM, Dharmaraj S, Bhattacharya SS et al. Prevalence of AIPL1 mutations in inherited retinal degenerative disease. Mol Genet Metab 2000; 70: 142–150.

    Article  CAS  PubMed  Google Scholar 

  5. Dharmaraj S, Leroy BP, Sohocki MM, Koenekoop RK, Perrault I, Anwar K et al. The phenotype of Leber congenital amaurosis in patients with AIPL1 mutations. Arch Ophthalmol 2004; 122: 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  6. Dyer MA, Donovan SL, Zhang J, Gray J, Ortiz A, Tenney R et al. Retinal degeneration in Aipl1-deficient mice: a new genetic model of Leber congenital amaurosis. Brain Res Mol Brain Res 2004; 132: 208–220.

    Article  CAS  PubMed  Google Scholar 

  7. Khani SC, Pawlyk BS, Bulgakov OV, Kasperek E, Young JE, Adamian M et al. AAV-mediated expression targeting of rod and cone photoreceptors with a human rhodopsin kinase promoter. Invest Ophthalmol Vis Sci 2007; 48: 3954–3961.

    Article  PubMed  Google Scholar 

  8. Rivolta C, Sharon D, DeAngelis MM, Dryja TP . Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet 2002; 11: 1219–1227.

    Article  CAS  PubMed  Google Scholar 

  9. Berson EL . Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 1993; 34: 1659–1676.

    CAS  PubMed  Google Scholar 

  10. Koenekoop RK . An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol 2004; 49: 379–398.

    Article  PubMed  Google Scholar 

  11. Allikmets R, Koenekoop RK, Cremers FP, van den Hurk JA, den Hollander AI, Perrault I et al. Leber congenital amaurosis: a genetic paradigm. Ophthalmic Genet 2004; 25: 67–79.

    Article  CAS  PubMed  Google Scholar 

  12. Dryja TP, Adams SM, Grimsby JL, McGee TL, Hong DH, Li T et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet 2001; 68: 1295–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gerber S, Perrault I, Hanein S, Barbet F, Ducroq D, Ghazi I et al. Complete exon–intron structure of the RPGR-interacting protein (RPGRIP1) gene allows the identification of mutations underlying Leber congenital amaurosis. Eur J Hum Genet 2001; 9: 561–571.

    Article  CAS  PubMed  Google Scholar 

  14. den Hollander AI, Roepman R, Koenekoop RK, Cremers FP . Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 2008; 27: 391–419.

    Article  CAS  PubMed  Google Scholar 

  15. Akey DT, Zhu X, Dyer M, Li A, Sorensen A, Blackshaw S et al. The inherited blindness associated protein AIPL1 interacts with the cell cycle regulator protein NUB1. Hum Mol Genet 2002; 11: 2723–2733.

    Article  CAS  PubMed  Google Scholar 

  16. Ramamurthy V, Roberts M, van den Akker F, Niemi G, Reh TA, Hurley JB . AIPL1, a protein implicated in Leber's congenital amaurosis, interacts with and aids in processing of farnesylated proteins. Proc Natl Acad Sci USA 2003; 100: 12630–12635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van der Spuy J, Cheetham ME . The Leber congenital amaurosis protein AIPL1 modulates the nuclear translocation of NUB1 and suppresses inclusion formation by NUB1 fragments. J Biol Chem 2004; 279: 48038–48047.

    Article  CAS  PubMed  Google Scholar 

  18. van der Spuy J, Chapple JP, Clark BJ, Luthert PJ, Sethi CS, Cheetham ME . The Leber congenital amaurosis gene product AIPL1 is localized exclusively in rod photoreceptors of the adult human retina. Hum Mol Genet 2002; 11: 823–831.

    Article  CAS  PubMed  Google Scholar 

  19. Snyder SH, Lai MM, Burnett PE . Immunophilins in the nervous system. Neuron 1998; 21: 283–294.

    Article  CAS  PubMed  Google Scholar 

  20. Young JC, Barral JM, Ulrich Hartl F . More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 2003; 28: 541–547.

    Article  CAS  PubMed  Google Scholar 

  21. Chapple JP, Grayson C, Hardcastle AJ, Saliba RS, van der Spuy J, Cheetham ME . Unfolding retinal dystrophies: a role for molecular chaperones? Trends Mol Med 2001; 7: 414–421.

    Article  CAS  PubMed  Google Scholar 

  22. Bulgakov OV, Liu X, Li T . The biosynthesis/transport of cone photoreceptor cGMP phosphodiesterases requires AIPLI, a putative chaperone protein that is defective in one form of Leber congenital amorosis. Invest Ophthalmol Vis Sci 2005; 46: Abstract 1728.

  23. Lamb TD, Pugh Jr EN . A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 1992; 449: 719–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007; 81: 11372–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Natkunarajah M, Trittibach P, McIntosh J, Duran Y, Barker SE, Smith AJ et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Therapy 2008; 15: 463–467.

    Article  CAS  PubMed  Google Scholar 

  26. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5: 591–594.

    Article  CAS  PubMed  Google Scholar 

  27. Bennett J, Maguire AM, Cideciyan AV, Schnell M, Glover E, Anand V et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA 1999; 96: 9920–9925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ali RR . Prospects for gene therapy. Novartis Found Symp 2004; 255: 165–172; discussion 173–168.

    CAS  PubMed  Google Scholar 

  30. Dejneka NS, Rex TS, Bennett J . Gene therapy and animal models for retinal disease. Dev Ophthalmol 2003; 37: 188–198.

    Article  CAS  PubMed  Google Scholar 

  31. Rolling F . Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Therapy 2004; 11: S26–S32.

    Article  CAS  PubMed  Google Scholar 

  32. Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW, Munro PM et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 2000; 25: 306–310.

    Article  CAS  PubMed  Google Scholar 

  33. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  34. Dejneka NS, Surace EM, Aleman TS, Cideciyan AV, Lyubarsky A, Savchenko A et al. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 2004; 9: 182–188.

    Article  CAS  PubMed  Google Scholar 

  35. Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, Redmond TM et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003; 44: 1663–1672.

    Article  PubMed  Google Scholar 

  36. Smith AJ, Schlichtenbrede FC, Tschernutter M, Bainbridge JW, Thrasher AJ, Ali RR . AAV-mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther 2003; 8: 188–195.

    Article  CAS  PubMed  Google Scholar 

  37. Pawlyk BS, Smith AJ, Buch PK, Adamian M, Hong DH, Sandberg MA et al. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci 2005; 46: 3039–3045.

    Article  PubMed  Google Scholar 

  38. Pang JJ, Boye SL, Kumar A, Dinculescu A, Deng W, Li J et al. AAV-mediated gene therapy for retinal degeneration in the rd10 mouse containing a recessive PDEbeta mutation. Invest Ophthalmol Vis Sci 2008; 49: 4278–4283.

    Article  PubMed  Google Scholar 

  39. Alexander JJ, Umino Y, Everhart D, Chang B, Min SH, Li Q et al. Restoration of cone vision in a mouse model of achromatopsia. Nat Med 2007; 13: 685–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan MH, Smith AJ, Pawlyk B, Xu X, Liu X, Bainbridge JB et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet 2009; 18: 2099–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008; 105: 15112–15117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  44. Young JE, Vogt T, Gross KW, Khani SC . A short, highly active photoreceptor-specific enhancer/promoter region upstream of the human rhodopsin kinase gene. Invest Ophthalmol Vis Sci 2003; 44: 4076–4085.

    Article  PubMed  Google Scholar 

  45. Young JE, Gross KW, Khani SC . Conserved structure and spatiotemporal function of the compact rhodopsin kinase (GRK1) enhancer/promoter. Mol Vis 2005; 11: 1041–1051.

    CAS  PubMed  Google Scholar 

  46. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Molday R . Monoclonal antibodies to rhodopsin and other proteins of rod outer segments. In: Osborne N, Chader G (eds). Progress in Retinal Research, vol. 8. Pergamon Press: New York, 1988, pp 173–209.

    Google Scholar 

Download references

Acknowledgements

We thank Dr Michael Dyer (St Jude Children's Research Hospital, Memphis, TN, USA) for providing the Aipl1−/− mice, Dr Visvanathan Ramamurthy (West Virginia University, Morgantown, WV, SA) for human AIPL1 antiserum, Norman Michaud (Massachusetts Eye & Ear Histology Core) for a portion of the histology processing and Dr Jeng-Shin Lee (the Research Vector Core, Harvard Medical School) for AAV vector packaging. This work was supported by National Eye Institute Grant EY10581, NEI core grant for Vision Research (P30EY14104), the Foundation Fighting Blindness, the Foundation for Retina Research, the Macular Vision Research Foundation, the Massachusetts Lions Eye Research Fund and by grants from the European Union (AAVEYE), the UK Department of Health and National Institute of Health Research BMRC for Ophthalmology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Pawlyk, B., Xu, X. et al. Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Ther 17, 117–131 (2010). https://doi.org/10.1038/gt.2009.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.104

Keywords

This article is cited by

Search

Quick links