Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Progress & Prospects: Gene therapy in aging

Abstract

Studies performed on various experimental model systems indicate that genetic interventions can increase longevity, even if in a highly protected laboratory condition. Generally, such interventions required partial or complete switching off of the gene and inhibiting the activity of its gene products, which normally have other well-defined roles in metabolic processes. Overexpression of some genes, such as stress response and antioxidant genes, in some model systems also extends their longevity. Such genetic interventions may not be easily applicable to humans without knowing their effects on human growth, development, maturation, reproduction and other characteristics. Studies on the association of single nucleotide polymorphisms and multiple polymorphisms (haplotype) in genes with human longevity have identified several genes whose frequencies increase or decrease with age. Whether genetic redesigning can be achieved in the wake of numerous and complex epigenetic factors that effectively determine the life course and the life span of an individual still appears to be a ‘mission impossible’.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rattan SIS . The science of healthy aging: genes, milieu, and chance. Ann N Y Acad Sci 2007; 1114: 1–10.

    Article  CAS  Google Scholar 

  2. Holliday R . Ageing: The Paradox of Life. Springer: Dordrecht, The Netherlands, 2007, pp 1–132.

    Book  Google Scholar 

  3. Holliday R . The extreme arrogance of anti-aging medicine. Biogerontology 2008; doi:10.1007/s10522-008-9170-6.

  4. Holliday R . Aging is no longer an unsolved problem in biology. Ann NY Acad Sci 2006; 1067: 1–9.

    Article  Google Scholar 

  5. Hayflick L . Biological aging is no longer an unsolved problem. Ann NY Acad Sci 2007; 1100: 1–13.

    Article  CAS  Google Scholar 

  6. Rattan SIS . Theories of biological aging: genes, proteins and free radicals. Free Rad Res 2006; 40: 1230–1238.

    Article  CAS  Google Scholar 

  7. Rattan SIS . Increased molecular damage and heterogeneity as the basis of aging. Biol Chem 2008; 389: 267–272.

    Article  CAS  Google Scholar 

  8. Danchin A . Natural selection and immortality. Biogerontology 2008; 10.1007/s10522-008-9171-5.

  9. Olshansky SJ, Perls TT . New developments in the illegal provision of growth hormone for ‘anti-aging’ and bodybuilding. JAMA 2008; 299: 2792–2794.

    Article  CAS  Google Scholar 

  10. Li Y, Schellhorn HE . Can ageing-related degenerative diseases be ameliorated through adminstration of vitamin C at pharmacological levels? Med Hypoth 2007; 68: 1315–1317.

    Article  CAS  Google Scholar 

  11. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C . Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007; 297: 842–857.

    Article  CAS  Google Scholar 

  12. Linnane AW, Kios M, Vitetta L . Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 2007; 8: 445–467.

    Article  CAS  Google Scholar 

  13. Olsen A, Vantipalli MC, Lithgow GJ . Checkpoint proteins control survival of the postmitotic cells in Caenorhabditis elegans. Science 2006; 312: 1381–1385.

    Article  CAS  Google Scholar 

  14. Curran SP, Ruvkan G . Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 2007; 3: e56.

    Article  Google Scholar 

  15. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A . PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007; 447: 550–555.

    Article  CAS  Google Scholar 

  16. North BJ, Sinclair DA . Sirtuins: a conserved key unlocking AceCS activity. Trends Biochem Sci 2007; 32: 1–4.

    Article  CAS  Google Scholar 

  17. Hipkiss A . Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms? Biogerontology 2008; 9: 49–55.

    Article  CAS  Google Scholar 

  18. Hipkiss AR . Dietary restriction, glycolysis, hormesis and ageing. Biogerontology 2007; 8: 221–224.

    Article  CAS  Google Scholar 

  19. Vijg J, Campisi J . Puzzles, promises and a cure for ageing. Nature 2008; 454: 1065–1071.

    Article  CAS  Google Scholar 

  20. Longo VD . The race to control aging and disease. Biochemist 2008; 30: 8–13.

    CAS  Google Scholar 

  21. Schriner SE, Linford NJ . Extension of mouse lifespan by overexpression of catalase. Age 2006; 28: 209–218.

    Article  CAS  Google Scholar 

  22. Rattan SIS . Cellular senescence in vitro. Encyclopedia of Life Sciences 2008; doi:10.1002/9780470015902.a0002567.pub2.

  23. Campisi J, d’Adda di Fagagna F . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.

    Article  CAS  Google Scholar 

  24. Collado M, Blasco MA, Serrano M . Cellular senescence in cancer and aging. Cell 2007; 130: 223–233.

    Article  CAS  Google Scholar 

  25. Flores I, Evan G, Blasco MA . Genetic analysis of myc and telomerase interactions in vivo. Mol Cell Biol 2006; 26: 6130–6138.

    Article  CAS  Google Scholar 

  26. Van Voorhies WA, Curtsinger JW, Rose MR . Do longevity mutants always show trade-offs? Exp Gerontol 2006; 41: 1055–1058.

    Article  CAS  Google Scholar 

  27. Chen J, Senturk D, Wang JL, Muller HG, Carey JR, Caswell H et al. A demographic analysis of the fitness cost of extended longevity in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2007; 62: 126–135.

    Article  Google Scholar 

  28. Unger RH . Klotho-induced insulin resistance: a blessing in disguise? Nat Med 2006; 12: 56–57.

    Article  CAS  Google Scholar 

  29. Christensen K, Johnson TE, Vaupel JW . The quest for genetic determinants of human longevity: challenges and insights. Nature Rev Genet 2006; 7: 436–448.

    Article  CAS  Google Scholar 

  30. Caselli G, Pozzi L, Vaupel JW, Deiana L, Pes G, Carru C et al. Family clustering in Sardinian longevity: a genealogical appraoach. Exp Gerontol 2006; 41: 727–736.

    Article  CAS  Google Scholar 

  31. Martin GM, Bergman A, Barzilai N . Genetic determinants of human health span and life span. PLoS Genet 2007; 3: e125.

    Article  Google Scholar 

  32. Singh R, Kølvraa S, Rattan SIS . Genetics of longevity with emphasis on the relevance of HSP70 genes. Front Biosci 2007; 12: 4504–4513.

    Article  CAS  Google Scholar 

  33. Dato S, Carotenuto L, De Benedictis G . Genes and longevity: a genetic-demographic approach reveals sex- and age-specific gene effects not shown by the case-control approach (APOE and HSP70.1 loci). Biogerontology 2007; 8: 31–41.

    Article  CAS  Google Scholar 

  34. Novelli V, Viviani Anselmi C, Roncarati R, Guffanti G, Malovini A, Piluso G et al. Lack of replication of genetic associations with human longevity. Biogerontology 2008; 9: 85–92.

    Article  Google Scholar 

  35. Scola L, Lio D, Candore G, Forte GI, Crivello A, Colonna-Romano G et al. Analysis of HLA-DRB1, DQA1, DQB1 haplotypes in Sardinian centenarians. Exp Gerontol 2008; 43: 114–118.

    Article  CAS  Google Scholar 

  36. Flachbart F, Croucher PJP, Nikolaus S, Hampe J, Cordes C, Schreiber S et al. Sirtuin (SIRT1) sequence variation is not asociated with exceptional human longvity. Exp Gerontol 2006; 41: 98–102.

    Article  Google Scholar 

  37. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 2008; 105: 13987–13992.

    Article  CAS  Google Scholar 

  38. Wilding CS, Rees GS, Relton CL, Tawn EJ . Genotype profiles of loci encloding DNA repair enzymes in newborn and elderly populations: no evidence of association with longevity. Biogerontology 2006; 7: 35–42.

    Article  CAS  Google Scholar 

  39. Singh R, Kølvraa S, Bross P, Christensen K, Gregersen N, Tan Q et al. Heat-shock protein 70 genes and human longevity. A view from Denmark. Ann NY Acad Sci 2006; 1067: 301–308.

    Article  CAS  Google Scholar 

  40. Singh R, Kølvraa S, Bross P, Jensen UB, Gregersen N, Tan Q et al. Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms on HSP70 genes. Cell Stress Chaperones 2006; 11: 208–215.

    Article  CAS  Google Scholar 

  41. Budovsky A, Abramovich A, Cohen RM, Chalifa-Caspi V, Fraifeld VE . Longevity network: construction and implications. Mech Ageing Dev 2007; 128: 117–124.

    Article  CAS  Google Scholar 

  42. Budovsky A, Tacutu R, Yanai H, Abramovich A, Wolfson M, Fraifeld V . Common gene signature of cancer and longevity. Mech Ageing Dev 2008; doi:10.1016/j.mad.2008.04.002.

  43. Kiuru M, Crystal RG . Progress and prospects: gene therapy for performance and appearance enhancement. Gene Ther 2008; 15: 329–337.

    Article  CAS  Google Scholar 

  44. Szymanski M, Barciszewski J . RNA regulation in mammals. Ann NY Acad Sci 2006; 1067: 461–468.

    Article  CAS  Google Scholar 

  45. Barciszewska MZ, Barciszewska AM, Rattan SIS . TLC-based detection of methylated cytosine: application to aging epigenetics. Biogerontology 2007; 8: 673–678.

    Article  CAS  Google Scholar 

  46. Conde-Perezprina JC, Luna-Lopez A, Lopez-Diazguerrero NE, Damian-Matsumura P, Zentella A, Konigsberg M . Msh2 promoter region hypermethylation as a marker of aging-related deterioration in old retired female breeder mice. Biogerontology 2008; 9: 325–334.

    Article  CAS  Google Scholar 

  47. Soskic V, Groebe K, Schrattenholz A . Nonenzymatic posttranslational protein modifications in ageing. Exp Gerontol 2008; 43: 247–257.

    Article  CAS  Google Scholar 

  48. Mueller LD, Rauser CL, Rose MR . An evolutionary heterogeneity model of late-life fecundity in Drosophila. Biogerontology 2007; 8: 147–161.

    Article  Google Scholar 

  49. Gavrilova N, Gavrilov LA . Can exceptional longevity be predicted? Contigencies 2008; Jul/Aug: 82–85.

  50. Yilmaz M, Ozsoy ED, Bozcuk AN . Maternal age effects on longevity in Drosophila melanogaster populations of different origin. Biogerontology 2008; 9: 163–168.

    Article  CAS  Google Scholar 

  51. Parsons PA . The ecological stress theory of aging and hormesis: an energetic evolutionary model. Biogerontology 2007; 8: 233–242.

    Article  Google Scholar 

  52. Rondo TA . Stem cells, ageing and the quest for immortality. Nature 2006; 441: 1080–1086.

    Article  Google Scholar 

  53. Sharpless NE, DePinho RA . How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 2007; 8: 703–713.

    Article  CAS  Google Scholar 

  54. Rattan SIS . Hormesis in aging. Ageing Res Rev 2008; 7: 63–78.

    Article  Google Scholar 

  55. Kirkwood TBL, Feder M, Finch CE, Franceschi C, Globerso A, Klingenberg CP et al. What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mech Age Dev 2006; 126: 439–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S I S Rattan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rattan, S., Singh, R. Progress & Prospects: Gene therapy in aging. Gene Ther 16, 3–9 (2009). https://doi.org/10.1038/gt.2008.166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.166

Keywords

This article is cited by

Search

Quick links