Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced antiglioma activity of chimeric HCMV/HSV-1 oncolytic viruses

Abstract

Oncolytic herpes simplex virus (HSV)-1 γ134.5-deletion mutants (Δγ134.5 HSV) are promising agents for tumor therapy. The attenuating mutation renders the virus aneurovirulent but also limits late viral protein synthesis and efficient replication in many tumors. We tested whether one function of γ134.5 gene, which mediates late viral protein synthesis through host protein kinase R (PKR) antiviral response evasion, could be restored, without restoring the neurovirulence. We have previously reported the construction of two chimeric Δγ134.5 HSV vectors (chimeric HSV), C130 and C134, which express the human cytomegalovirus (HCMV) PKR-evasion genes TRS1 and IRS1, respectively. We now demonstrate the following. The HCMV/HSV-1 chimeric viruses (i) maintain late viral protein synthesis in the human malignant glioma cells tested (D54-MG, U87-MG and U251-MG); (ii) replicate to higher titers than Δγ134.5 HSV in malignant glioma cells in vitro and in vivo; (iii) are aneurovirulent; and (iv) are superior to other Δγ134.5 HSV with both improved reduction of tumor volumes in vivo, and improved survival in two experimental murine brain tumor models. These findings demonstrate that transfer of HCMV IRS1 or TRS1 gene into Δγ134.5 HSV significantly improves replication in malignant gliomas without restoring wild-type neurovirulence, resulting in enhanced tumor reduction and prolonged survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  PubMed  Google Scholar 

  2. Markert JM, Parker JN, Gillespie GY, Whitley RJ . Genetically engineered human herpes simplex virus in the treatment of brain tumours. Herpes 2001; 8: 17–22.

    CAS  PubMed  Google Scholar 

  3. He B, Chou J, Liebermann DA, Hoffman B, Roizman B . The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the gamma(1)34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. J Virol 1996; 70: 84–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. He B, Gross M, Roizman B . The gamma (1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 1997; 94: 843–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chou J, Chen JJ, Gross M, Roizman B . Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5- mutants of herpes simplex virus 1. Proc Natl Acad Sci USA 1995; 92: 10516–10520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chou J, Roizman B . The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci USA 1992; 89: 3266–3270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cassady KA, Gross M, Gillespie GY, Roizman B . Second-site mutation outside of the U(S)10–12 domain of Deltagamma(1)34.5 herpes simplex virus 1 recombinant blocks the shutoff of protein synthesis induced by activated protein kinase R and partially restores neurovirulence. J Virol 2002; 76: 942–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chou J, Kern ER, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  9. Bolovan CA, Sawtell NM, Thompson RL . ICP34.5 mutants of herpes simplex virus type 1 strain 17syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J Virol 1994; 68: 48–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. MacLean AR, ul-Fareed M, Robertson L, Harland J, Brown SM . Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol 1991; 72 (Part 3): 631–639.

    Article  CAS  PubMed  Google Scholar 

  11. Markovitz NS, Baunoch D, Roizman B . The range and distribution of murine central nervous system cells infected with the gamma(1)34.5- mutant of herpes simplex virus 1. J Virol 1997; 71: 5560–5569.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Andreansky SS, He B, Gillespie GY, Soroceanu L, Markert J, Chou J et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci USA 1996; 93: 11313–11318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohr I, Sternberg D, Ward S, Leib D, Mulvey M, Gluzman Y . A herpes simplex virus type 1 gamma34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals. J Virol 2001; 75: 5189–5196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  15. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy 2000; 7: 859–866.

    Article  CAS  PubMed  Google Scholar 

  16. Kambara H, Okano H, Chiocca EA, Saeki Y . An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 2005; 65: 2832–2839.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou G, Roizman B . Characterization of a recombinant herpes simplex virus 1 designed to enter cells via the IL13Ralpha2 receptor of malignant glioma cells. J Virol 2005; 79: 5272–5277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cassady KA . Human cytomegalovirus TRS1 and IRS1 gene products block the double-stranded-RNA-activated host protein shutoff response induced by herpes simplex virus type 1 infection. J Virol 2005; 79: 8707–8715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shir A, Levitzki A . Inhibition of glioma growth by tumor-specific activation of double-stranded RNA-dependent protein kinase PKR. Nat Biotechnol 2002; 20: 895–900.

    Article  CAS  PubMed  Google Scholar 

  20. Shir A, Friedrich I, Levitzki A . Tumor specific activation of PKR as a non-toxic modality of cancer treatment. Semin Cancer Biol 2003; 13: 309–314.

    Article  CAS  PubMed  Google Scholar 

  21. Todo T, Martuza RL, Rabkin SD, Johnson PA . Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 2001; 98: 6396–6401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Todo T, Rabkin SD, Sundaresan P, Wu A, Meehan KR, Herscowitz HB et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 1999; 10: 2741–2755.

    Article  CAS  PubMed  Google Scholar 

  23. Todo T, Martuza RL, Dallman MJ, Rabkin SD . In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity. Cancer Res 2001; 61: 153–161.

    CAS  PubMed  Google Scholar 

  24. Rasty S, Poliani PL, Fink DJ, Glorioso JC . Deletion of the S component inverted repeat sequence c' and the nonessential genes U(S)1 through U(S)5 from the herpes simplex virus type 1 genome substantially impairs productive viral infection in cell culture and pathogenesis in the rat central nervous system. J Neurovirol 1997; 3: 247–264.

    Article  CAS  PubMed  Google Scholar 

  25. Hock RA, Reynolds BD, Tucker-McClung CL, Heuer JG . Murine neuroblastoma vaccines produced by retroviral transfer of MHC class II genes. Cancer Gene Ther 1996; 3: 314–320.

    CAS  PubMed  Google Scholar 

  26. Orentas RJ, Schauer D, Bin Q, Johnson BD . Electrofusion of a weakly immunogenic neuroblastoma with dendritic cells produces a tumor vaccine. Cell Immunol 2001; 213: 4–13.

    Article  CAS  PubMed  Google Scholar 

  27. Chiocca EA, Broaddus WC, Gillies GT, Visted T, Lamfers ML . Neurosurgical delivery of chemotherapeutics, targeted toxins, genetic and viral therapies in neuro-oncology. J Neurooncol 2004; 69: 101–117.

    Article  PubMed  Google Scholar 

  28. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM . Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–856.

    Article  CAS  PubMed  Google Scholar 

  29. Chambers R, Gillespie GY, Soroceanu L, Andreansky S, Chatterjee S, Chou J et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Natl Acad Sci USA 1995; 92: 1411–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Papanastassiou V, Rampling R, Fraser M, Petty R, Hadley D, Nicoll J et al. The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Therapy 2002; 9: 398–406.

    Article  CAS  PubMed  Google Scholar 

  31. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 2005; 202: 673–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miller CG, Fraser NW . Requirement of an integrated immune response for successful neuroattenuated HSV-1 therapy in an intracranial metastatic melanoma model. Mol Ther 2003; 7: 741–747.

    Article  CAS  PubMed  Google Scholar 

  33. Wakimoto H, Johnson PR, Knipe DM, Chiocca EA . Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Therapy 2003; 10: 983–990.

    Article  CAS  PubMed  Google Scholar 

  34. Mohr I, Gluzman Y . A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J 1996; 15: 4759–4766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taneja S, MacGregor J, Markus S, Ha S, Mohr I . Enhanced antitumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells. Proc Natl Acad Sci USA 2001; 98: 8804–8808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu TC, Zhang T, Fukuhara H, Kuroda T, Todo T, Martuza RL et al. Oncolytic HSV armed with platelet factor 4, an antiangiogenic agent, shows enhanced efficacy. Mol Ther 2006; 14: 789–797.

    Article  CAS  PubMed  Google Scholar 

  37. Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P et al. ICP34*5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy 2003; 10: 292–303.

    Article  CAS  PubMed  Google Scholar 

  38. Gromeier M, Alexander L, Wimmer E . Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci USA 1996; 93: 2370–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E . Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 1999; 73: 958–964.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E . Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA 2000; 97: 6803–6808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cassady KA, Gross M, Roizman B . The second-site mutation in the herpes simplex virus recombinants lacking the gamma134.5 genes precludes shutoff of protein synthesis by blocking the phosphorylation of eIF-2alpha. J Virol 1998; 72: 7005–7011.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Andreansky S, He B, van Cott J, McGhee J, Markert JM, Gillespie GY et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Therapy 1998; 5: 121–130.

    Article  CAS  PubMed  Google Scholar 

  43. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM . Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 2000; 97: 2208–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hellums EK, Markert JM, Parker JN, He B, Perbal B, Roizman B et al. Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro-oncol 2005; 7: 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gehan EA . Relationship of prenatal irradiation to death from a malignant disease. Biometrics 1972; 28: 239–244.

    CAS  PubMed  Google Scholar 

  46. Link CL . Confidence intervals for the survival function using Cox's proportional-hazard model with covariates. Biometrics 1984; 40: 601–609.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Huey Nguyen and Der Wei Venable for expert technical assistance, Dr M Shimamura and Ms Spira Steyn for editing. We thank Dr Wenquan Wang for reading the manuscript and providing his expert statistical advice, Dr Kurt Zinn for his assistance through the multi-modality imaging center, Dr B Roizman for providing HSV-1(F), R3616, and discussions, and Dr T Shenk for providing the pHCMV215 plasmid. We acknowledge the support of the Ruth L Kirschstein NRSA Fellowship 1 F31 NS050924–01 and Medical Scientist Training Program (ACS), NCI P50 CA 097247 (GYG, KAC) and NCI P01 CA 71933 (JMM, JNP, GYG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K A Cassady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, A., Parker, J., Gillespie, G. et al. Enhanced antiglioma activity of chimeric HCMV/HSV-1 oncolytic viruses. Gene Ther 14, 1045–1054 (2007). https://doi.org/10.1038/sj.gt.3302942

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302942

Keywords

This article is cited by

Search

Quick links