Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

The genetics of systemic lupus erythematosus: putting the pieces together

Abstract

With λs estimates of 10 to 20 and other evidence of familial aggregation, as well as a monozygotic twin concordance rate >20, systemic lupus erythematosus (SLE) would appear to be a very promising phenotype using modern genetic approaches. Indeed, genetic associations are already known at numerous candidate loci including various HLA alleles, complement component genes, Fcγ receptors, and others, and murine genetic studies of lupus models have provided additional candidate genes and potential syntenic linkages to evaluate in man. The completed genetic linkage studies performed on various collections of pedigrees multiplex for SLE have identified 60 susceptibility loci with varying degrees of evidence for linkage in man. Seven of these meet or exceed the threshold for significant linkage (LOD 3.3 or P 0.00005) at 1q22–23, 1q41, 2q37, 4p16, 6p21–11, 16q13 and 17p13. In addition, these linkages usually dominate in one ethnicity or another, suggesting that the responsible polymorphisms, once identified, will also vary by ethnicity. Evidence that these linkages can be reproduced range from outright independent confirmation (1q41, 4p16 and 6p21) to additional suggestive evidence in the genomic region of the purported linkage (1q22–23 and 2q37). The results now available suggest that human lupus genetics are robust and that gene identification should be possible using existing genetic approaches and technologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hochberg MC . The epidemiology of systemic lupus erythematosus. In: Wallace DJ, Hahn BH (eds) Dubois’ LupusErythematosus Williams and Wilkins: Baltimore 1997 49–65

    Google Scholar 

  2. Fessel WJ . Systemic lupus erythematosus in the community. Incidence, prevalence, outcome, and first symptoms; the high prevalence in black women Arch Intern Med 1974 134: 1027–1035

    CAS  PubMed  Google Scholar 

  3. Kaslow RA, Masi AT . Age, sex, and race effects on mortality from systemic lupus erythematosus in the United States Arthritis Rheum 1978 21: 473–479

    CAS  PubMed  Google Scholar 

  4. Lawrence RC, Helmick CG, Arnett FC et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States Arthritis Rheum 1998 41: 778–799

    CAS  PubMed  Google Scholar 

  5. Hochberg MC . The application of genetic epidemiology to systemic lupus erythematosus J Rheumatol 1987 14: 867–869

    CAS  PubMed  Google Scholar 

  6. Sestak AL, Shaver TS, Moser KL, Neas BR, Harley JB . Familial aggregation of lupus and autoimmunity in an unusual multiplex pedigree J Rheumatol 1999 26: 1495–1499

    CAS  PubMed  Google Scholar 

  7. Vyse TJ, Todd JA . Genetic analysis of autoimmune disease Cell 1996 85: 311–318

    Article  CAS  PubMed  Google Scholar 

  8. Deapen D, Escalante A, Weinrib L et al. A revised estimate of twin concordance in systemic lupus erythematosus Arthritis Rheum 1992 35: 311–318

    CAS  PubMed  Google Scholar 

  9. Arnett FC . The Genetics of Human Lupus. In: Wallace DJ, Hahn BH (eds) Dubois’ Lupus Erythematosus Williams and Wilkins: Baltimore 1997 77–117

    Google Scholar 

  10. Duits AJ, Bootsma H, Derksen RH et al. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients Arthritis Rheum 1995 39: 1832–1836

    Google Scholar 

  11. Salmon JE, Ng S, Yoo DH, Kim TH, Kim SY, Song GG . Altered distribution of Fcgamma receptor IIIA alleles in a cohort of Korean patients with lupus nephritis Arthritis Rheum 1999 42: 818–819

    CAS  PubMed  Google Scholar 

  12. Salmon JE, Millard S, Schachter LA et al. FcγRIIA alleles are heritable risk factors for lupus nephritis in African Americans J Clin Invest 1996 97: 1348–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu J, Edberg JC, Redecha PB et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease J Clin Invest 1997 100: 1059–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bowness P, Davies KA, Norsworthy PJ et al. Hereditary C1q deficiency and systemic lupus erythematosus Q J Med 1994 87: 455–464

    CAS  Google Scholar 

  15. Ratnoff WD . Inherited deficiencies of complement in rheumatic diseases Rheum Dis Clin North Am 1996 22: 75–94

    CAS  PubMed  Google Scholar 

  16. Schur PH . Complement and systemic lupus erythematosus. In: Wallace DJ, Hahn BH (eds) Dubois’ Lupus Erythematosus Williams and Wilkins: Baltimore 1997 245–261

    Google Scholar 

  17. Walport MJ, Lachmann PJ . Complement deficiencies and abnormalities of the complement system in systemic lupus erythematosus and related disorders Curr Opin Rheumatol 1990 2: 661–663

    CAS  PubMed  Google Scholar 

  18. Drake CG, Babcock SK, Palmer E, Kotzin BL . Genetic analysis of the NZB contribution to lupus-like autoimmune disease in (NZB x NZW)F1mice Proc Natl Acad Sci USA 1994 91: 4062–4066

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Drake CG, Rozzo SJ, Hirschfeld HF, Smarnworawong NP, Palmer E, Kotzin BL . Analysis of the New Zealand Black contribution to lupus-like renal disease. Multiple genes that operate in a threshold manner J Immunol 1995 154: 2441–2447

    CAS  PubMed  Google Scholar 

  20. Haywood ME, Hogarth MB, Slingsby JH et al. Identification of intervals on chromosomes 1, 3, and 13 linked to the development of lupus in BXSB mice Arthritis Rheum 2000 43: 349–355

    CAS  PubMed  Google Scholar 

  21. Hogarth MB, Slingsby JH, Allen PJ et al. Multiple lupus susceptibility loci map to chromosome 1 in BXSB mice J Immunol 1998 161: 2753–2761

    CAS  PubMed  Google Scholar 

  22. Kono DH, Burlingame RW, Owens DG et al. Lupus susceptibility loci in New Zealand mice Proc Natl Acad Sci USA 1994 91: 10168–10172

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK . Polygenic control of susceptibility to murine systemic lupus erythematosus Immunity 1994 1: 219–229

    CAS  PubMed  Google Scholar 

  24. Morel L, Tian XH, Croker BP, Wakeland EK . Epistatic modifiers of autoimmunity in a murine model of lupus nephritis Immunity 1999 11: 131–139

    CAS  PubMed  Google Scholar 

  25. Vidal S, Kono DH, Theofilopoulos AN . Loci predisposing to autoimmunity in MRL-Faslprand C57BL/6-Faslprmice J Clin Invest 1998 101: 696–702

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vyse TJ, Rozzo SJ, Drake CG, Izui S, Kotzin BL . Control of multiple autoantibodies linked with a lupus nephritis susceptibility locus in New Zealand Black mice J Immunol 1997 158: 5566–5574

    CAS  PubMed  Google Scholar 

  27. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results Nat Genet 1995 11: 241–247

    Article  CAS  PubMed  Google Scholar 

  28. Bias WB, Reveille JD, Beaty TH, Meyers DA, Arnett FC . Evidence that autoimmunity in man is a Mendelian dominant trait Am J Hum Genet 1986 39: 584–602

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaffney PM, Kearns GM, Shark KB et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families Proc Natl Acad Sci USA 1998 95: 14875–14879

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaffney PM, Ortmann WA, Selby SA et al. Genome screening in human systemic lupus erythematosus: results from a second Minnesota cohort and combined analyses of 187 sib-pair families Am J Hum Genet 2000 66: 547–556

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gray-McGuire C, Moser KL, Gaffney PM et al. Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16–15.2 Am J Hum Genet 2000 67: 1460–1469

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lindqvist AK, Steinsson K, Johanneson B et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q J Autoimmun 2000 14: 169–178

    CAS  PubMed  Google Scholar 

  33. Moser KL, Neas BR, Salmon JE et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees Proc Natl Acad Sci USA 1998 95: 14869–14874

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shai R, Quismorio FP Jr, Li L et al. Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families Hum Mol Genet 1999 8: 639–644

    CAS  PubMed  Google Scholar 

  35. Tsao BP, Cantor RM, Kalunian KC et al. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus J Clin Invest 1997 99: 725–731

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nath SK, Kelly JA, Namjou B et al. Evidence for a susceptibility gene, SLEV1, on chromosome 17p13 in families with vitiligo-related systemic lupus erythematosus Am J Hum Genet 2001 69: 1401–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tiwari JL, Terasaki PI . HLA-DR and disease associations Prog Clin Biol Res 1981 58: 151–163

    CAS  PubMed  Google Scholar 

  38. Grumet FC, Coukell A, Bodmer JG, Bodmer WF, McDevitt HO . Histocompatibility (HL-A) antigens associated with systemic lupus erythematosus. A possible genetic predisposition to disease N Engl J Med 1971 285: 193–196

    CAS  PubMed  Google Scholar 

  39. Ahearn JM, Provost TT, Dorsch CA, Stevens MB, Bias WB, Arnett FC . Interrelationships of HLA-DR, MB, and MT phenotypes, autoantibody expression, and clinical features in systemic lupus erythematosus Arthritis Rheum 1982 25: 1031–1040

    CAS  PubMed  Google Scholar 

  40. Celada A, Barras C, Benzonana G, Jeannet M . Increased frequency of HLA-DRw3 in systemic lupus erythematosus Tissue Antigens 1980 15: 283–288

    CAS  PubMed  Google Scholar 

  41. Gladman KK, Urowitz MB, Darlinkton GA . Disease expression and class II HLA antigens in systemic lupus erythematosus Lupus 1999 8: 466–470

    CAS  PubMed  Google Scholar 

  42. Hashimoto H, Tsuda H, Matsumoto T et al. HLA antigens associated with systemic lupus erythematosus in Japan J Rheumatol 1985 12: 919–923

    CAS  PubMed  Google Scholar 

  43. Kachru RB, Sequeira W, Mittal KK, Siegel ME, Telischi M . A significant increase of GLA-DR3 and DR2 in systemic lupus erythematosus among blacks J Rheumatol 1984 11: 471–474

    CAS  PubMed  Google Scholar 

  44. Kawai T, Katoh K, Tani K, Okuda K, Okubo T . HLA antigens in Japanese patients with central nervous system lupus Tissue Antigens 1990 35: 45–46

    CAS  PubMed  Google Scholar 

  45. Mehra NK, Pande I, Taneja V et al. Major histocompatibility complex genes and susceptibility to systemic lupus erythematosus in northern India Lupus 1993 2: 313–314

    CAS  PubMed  Google Scholar 

  46. Reinertsen JL, Klippel JH, Johnson AH, Steinberg AD, Decker JL, Mann DL . B-lymphocyte alloantigens associated with systemic lupus erythematosus N Engl J Med 1978 299: 515–518

    CAS  PubMed  Google Scholar 

  47. Reinharz D, Tiercy JM, Mach B, Jeannet M . Absence of DRw15/3 and DRw15/7 heterozygotes in Caucasian patients with systemic lupus erythematosus Tissue Antigens 1991 37: 10–15

    CAS  PubMed  Google Scholar 

  48. Reveille JD, Barger BO, Hodge TW . HLA-DR2-DRB1 allele frequencies in DR2-positive black Americans with and without systemic lupus erythematosus Tissue Antigens 1991 38: 178–180

    CAS  PubMed  Google Scholar 

  49. Scherak O, Smolen JS, Mayr WR . HLA-DRw3 and systemic lupus erythematosus Arthritis Rheum 1980 23: 954–957

    CAS  PubMed  Google Scholar 

  50. So AK, Fielder AH, Warner CA, Isenberg DA, Batchelor JR, Walport MJ . DNA polymorphism of major histocompatibility complex class II and class III genes in systemic lupus erythematosus Tissue Antigens 1990 35: 144–147

    CAS  PubMed  Google Scholar 

  51. Yen JH, Chen CJ, Tsai WC, Tsai JJ, Ou TT, Liu HW . HLA-DMA and HLA-DMB genotyping in patients with systemic lupus erythematosus J Rheumatol 1999 26: 1930–1933

    CAS  PubMed  Google Scholar 

  52. Harley JB, Moser KL . Genetics of lupus. In: Klippel JH, Dieppe PA (eds) Rheumatology Mosby: London 1998 7.3.1–6

    Google Scholar 

  53. Awdeh ZL, Raum D, Yunis EJ, Alper CA . Extended HLA/complement allele haplotypes: evidence or T/t-like complex in man Proc Natl Acad Sci USA 1983 80: 259–263

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Carroll MC, Palsdottir A, Belt KT, Porter RR . Deletion of complement C4 and 21-hydroxylase genes in the HLA class II region EMBO J 1995 4: 2547–2552

    Google Scholar 

  55. Whittingham S, Mathews JD, Schanfield MS, Tait BD, Mackay IR . HLA and Gm genes in systemic lupus erythematosus Tissue Antigens 1983 21: 50–57

    CAS  PubMed  Google Scholar 

  56. Kameda S, Naito S, Tanak et al. HLA antigens of patients with systemic lupus erythematosus in Japan Tissue Antigens 1982 20: 221–222

    CAS  PubMed  Google Scholar 

  57. Reveille JD, Moulds JM, Arnett FC . Major histocompatibility complex class II and C4 alleles in Mexican Americans withsystemic lupus erythematosus Tissue Antigens 1995 45: 91–97

    CAS  PubMed  Google Scholar 

  58. Hawkins BR, Wong KL, Wong RW, Chan KH, Dunckley H, Serjeantson SW . Strong association between the major histocompatibility complex and systemic lupus erythematosus in southern Chinese J Rheumatol 1987 14: 1128–1131

    CAS  PubMed  Google Scholar 

  59. Arnett FC, Moulds JM . HLA class III molecules and autoimmune rheumatic diseases Clin Exp Rheumatol 1991 9: 289–296

    CAS  PubMed  Google Scholar 

  60. Petri M, Watson R, Winkelstein J, McLean RH . Clinical expression of systemic lupus erythematosus in patients with C4 deficiency Medicine 1993 72: 236–244

    CAS  PubMed  Google Scholar 

  61. Naves M, Hajeer AH, Teh LS et al. Complement C4B null allele status confers risk for systemic lupus erythematosus in a Spanish population Eur J Immunogenet 1998 25: 317–320

    CAS  PubMed  Google Scholar 

  62. Hartung K, Baur MP, Coldewey R et al. Major histocompatibility complex haplotypes and complement C4 alleles in systemic lupus erythematosus: Results of a multicenter study J Clin Invest 1992 90: 1346–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cornillet P, Pennaforte JL, Philbert F et al. Complement C4a gene deletion in patients with systemic lupus erythematosus in France J Rheumatol 1993 20: 1633–1634

    CAS  PubMed  Google Scholar 

  64. Steinsson K, Jonsdottir S, Arason GJ et al. A study of the association of HLA DR, DQ, and complement C4 alleles with systemic lupus erythematosus in Iceland Ann Rheum Dis 1998 57: 503–505

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sullivan KE, Kim NA, Goldman D, Petri MA . C4A deficiency due to a 2 bp insertion is increased in patients with systemic lupus erythematosus J Rheumatol 1999 26: 2144–2147

    CAS  PubMed  Google Scholar 

  66. Frank MM . Complement in disease: inherited and acquired complement deficiencies In: Frank MM, Austen KF, Claman HN et al(eds) Samter’s Immunologic Diseases Little, Brown: Boston 1995 pp 489–500

    Google Scholar 

  67. Sullivan KE, Petri MA, Schmeckpeper BJ, McLean RH, Winkelstein JA . Prevalence of a mutation causing C2 deficiency in systemic lupus erythematosus J Rheumatol 1994 21: 1128–1133

    CAS  PubMed  Google Scholar 

  68. Ruddy S . Component deficiencies. 3. The second component Prog Allergy 1986 39: 250–260

    CAS  PubMed  Google Scholar 

  69. Truson L eds Sturfelt G, Nived O . Prevalence of the type I complement C2 deficiency gene in Swedish systemic lupus erythematosus patients Lupus 1993 2: 325–327

    Google Scholar 

  70. Walport MJ . Complement deficiency and disease Br J Rheumatol 1993 32: 269–273

    CAS  PubMed  Google Scholar 

  71. Lipsker DM, Schreckenberg-Gilliot C, Uring-Lambert B et al. Lupus erythematosus associated with genetically determined deficiency of the second component of the complement Arch Dermatol 2000 136: 1508–1514

    CAS  PubMed  Google Scholar 

  72. Provost TT, Arnett FC, Reichlin M . Homozygous C2 deficiency, lupus erythematosus, and anti-Ro (SSA) antibodies Arthritis Rheum 1983 26: 1279–1282

    CAS  PubMed  Google Scholar 

  73. Topaloglu R, Bakkaloglu A, Slingsby JH et al. Survey of Turkish systemic lupus erythematosus patients for a particular mutation of C1Q deficiency Clin Exp Rheumatol 2000 18: 75–77

    CAS  PubMed  Google Scholar 

  74. Reid KBM . Deficiency of the first component of human complement. In: Rosen FS, Seligmann M (eds) Immunodeficiencies Harwood Academic Publishers: Philadelphia 1993 283–293

    Google Scholar 

  75. Salmon JE, Edberg JC, Brogle NL, Kimberly RP . Allelic polymorphisms of human Fcγ receptor IIA and Fcγ receptor IIIB: independent mechaniams for differences in human phagocyte function J Clin Invest 1992 89: 1274–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Oh M, Petri MA, Kim NA, Sullivan KE . Frequency of the Fc gamma RIIIA-158F allele in African American patients with systemic lupus erythematosus J Rheumatol 1999 26: 1486–1489

    CAS  PubMed  Google Scholar 

  77. Dijstelbloem HM, Bijl M, Fijnheer R et al. Fc gamma receptor polymorphisms in systemic lupus erythematosus. Association with disease and in vivoclearance of immune complexes Arthritis Rheum 2000 43: 2793–2800

    CAS  PubMed  Google Scholar 

  78. Manger K, Repp R, Spriewald et al. Fcγ receptor IIa polymorphism in Caucasian patients with systemic lupuserythematosus Arthritis Rheum 1998 41: 1181–1189

    CAS  PubMed  Google Scholar 

  79. Smyth LJ, Snowden N, Carthy D, Papasteriades C, Hajeer A, Ollier WE . Fc gamma RIIa polymorphism in systemic lupus erythematosus Ann Rheum Dis 1997 56: 744–746

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Botto M, Theodoridis E, Thompson EM et al. Fc gamma RIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease Clin Exp Immunol 1996 104: 264–268

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Radeke HH, Gessner JE, Uciechowski P, Magert HJ, Schmidt RE, Resch K . Intrinsic human glomerular mesangial cells can express receptors for IgG complexes (hFc gamma RIII-A) and the associated Fc epsilon RI gamma-chain J Immunol 1994 153: 1281–1292

    CAS  PubMed  Google Scholar 

  82. Koene HR, Kleijer M, Swaak AJG et al. The Fc gamma RIIIA-159F allele is a risk factor for systemic lupus erythematosus Arthritis Rheum 1998 41: 1813–1818

    CAS  PubMed  Google Scholar 

  83. Werner G, von dem Borne AE, Bos MJE et al. Localization of the human NA1 allogen on neutrophils to Fc gamma receptors In Reinherz EL, Haynes BF, Nadler LM, Bernstein ID (eds) Leukocyte Typing II, Volume 3 Springer-Verlag: New York 1985 pp 109–121

    Google Scholar 

  84. Edberg JC, Redecha PB, Salmon JE, Kimberly RP . Human Fc gamma Receptor III (CD16). Isoforms with distinct allelic expression, extracellular domains, and membrane linkages on polymorphonuclear and natural killer cells J Immunol 1989 143: 1642–1649

    CAS  PubMed  Google Scholar 

  85. Ory PA, Goldstein IM, Kwoh EE, Clarkson SB . Characterization of polymorphic forms of Fc receptor III on human neutrophils J Clin Invest 1989 83: 1676–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ory PA, Clark MR, Kwoh EE, Clarkson SB, Goldstein IM . Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils J Clin Invest 1989 84: 1688–1691

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ravetch JV, Perussia B . Alternative membrane forms of Fc gamma receptor III (CD16) on human natural killer cells and neutrophils J Exp Med 1989 170: 481–497

    CAS  PubMed  Google Scholar 

  88. Salmon JE, Edberg JC, Kimberly RP . Fc gamma receptor III on human neutrophils. Allelic variants have functionally distinct capacities J Clin Invest 1990 85: 1287–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Clark MR, Liu L, Clarkson SB, Ory PA, Goldstein IM . An abnormality of the gene that encodes neutrophil Fc receptor III in a patient with systemic lupus erythematosus J Clin Invest 1990 86: 341–346

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Enenkel B, Jung D, Frey J . Molecular basis of IgG Fc receptor III defect in a patient with systemic lupus erythematosus Eur J Immunol 1991 21: 659–663

    CAS  PubMed  Google Scholar 

  91. Hatta Y, Tsuchiya N, Ohashi J et al. Association of Fc gamma receptor IIIB, but not Fc gamma receptor IIA and IIIA, ploymorphims with systemic lupus erythematosus in Japanese Genes Immun 1999 1: 53–60

    CAS  PubMed  Google Scholar 

  92. Mehrian R, Quismorio FP, Strassman G et al. Synergistic effect between IL-10 and bcl-2 genotypes in determining susceptibility to systemic lupus erythematosus Arthritis Rheum 1998 41: 596–602

    CAS  PubMed  Google Scholar 

  93. Ahmed S, Ihara K, Kanemitsu S et al. Association of CTLA-4 but not CD28 gene polymorphisms with systemic lupus erythematosus in the Japanese population Rheumatology 2001 40: 662–667

    CAS  PubMed  Google Scholar 

  94. Tebib JG, Alcocer-Varela J, Alarcon-Segovia D, Schur PH . Association between a T cell receptor restriction fragment length polymorphism and systemic lupus erythematosus J Clin Invest 1990 86: 1961–1967

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Stevens A, Ray D, Alansari A et al. Characterization of a prolactin gene polymorphism and its associations with systemic lupus erythematosus Arthritis Rheum 2001 44: 2358–2366

    CAS  PubMed  Google Scholar 

  96. Wilson AG, Gordon C, diGiovine FS et al. A genetic association between systemic lupus erythematosus and tumor necrosis factor alpha Eur J Immunol 1994 24: 191–195

    CAS  PubMed  Google Scholar 

  97. Zuniga J, Vargas-Alarcon G, Hernandez-Pacheco G, Portal-Celhay C, Yamamoto-Furusho JK, Granados J . Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with systemic lupus erythematosus (SLE) Genes Immun 2001 2: 363–366

    CAS  PubMed  Google Scholar 

  98. Komata T, Tsuchiya N, Matsushita M, Hagiwara K, Tokunaga K . Association of tumor necrosis factor receptor 2 (TNFR2) polymorphism with susceptibility to systemic lupus erythematosus Tissue Antigens 1999 53: 527–533

    CAS  PubMed  Google Scholar 

  99. Rousset F, Garcia E, Defrance T et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes Proc Natl Acad Sci USA 1992 89: 1890–1893

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hagiwara E, Gourley MF, Lee S, Klinman DK . Disease severity in patients with systemic lupus erythematosus correlates with an increased ration of IL-10: IFN gamma-secreting cells in the peripheral blood Arthritis Rheum 1996 39: 379–385

    CAS  PubMed  Google Scholar 

  101. Grondal G, Gunnarsson I, Ronnelid J, Rogberg S, Klareskog L, Lundberg I . Cytokine production, serum levels and disease activity in systemic lupus erythematosus Clin Exp Rheumatol 2000 18: 565–570

    CAS  PubMed  Google Scholar 

  102. Csiszar A, Nagy G, Gergely P, Pozsonyi T, Pocsik E . Increased interferon-gamma (IFN-gamma), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE) Clin Exp Immunol 2000 122: 464–470

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ishida H, Muchamuel T, Sakaguchi S, Andrade S, Menon S, Howard M . Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice J Exp Med 1994 179: 305–310

    CAS  PubMed  Google Scholar 

  104. Eskdale J, Kube D, Tesch H, Gallagher G . Mapping of the human IL10 gene and further characterization of the 5’ flanking sequence Immunogenetics 1997 46: 120–128

    CAS  PubMed  Google Scholar 

  105. Eskdale J, Wordsworth P, Bowman S, Field M, Gallagher G . Association between polymorphisms at the human IL-10 locus and systemic lupus erythematosus Tissue Antigens 1997 49: 635–639

    CAS  PubMed  Google Scholar 

  106. D’Alfonso S, Rampi M, Bocchio D, Colombo G, Scorza-Smeraldi R, Momigliano-Richardi P . Systemic lupus erythematosus candidate genes in Italian population: evidence for a significant association with interleukin-10 Arthritis Rheum 2000 43: 120–128

    PubMed  Google Scholar 

  107. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S . Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis Nature 1992 356: 314–317

    CAS  PubMed  Google Scholar 

  108. Takahashi T, Tanaka M, Brannan CI et al. Generalized lymphoproliferative disease in mice caused by a point mutation in the fas ligand Cell 1994 76: 969–976

    CAS  PubMed  Google Scholar 

  109. Horiuchi T, Nishizaka H, Yasunaga S et al. Association of Fas/APO-1 gene polymorphism with systemic lupus erythematosus in Japanese Rheumatology 1999 38: 516–520

    CAS  PubMed  Google Scholar 

  110. Lee YH, Kim YR, Ji JD, Sohn J, Song GG . Fas promoter -670 polymorphism is associated with development of anti-RNP antibodies in systemic lupus erythematosus J Rheum 2001 28: 2008–2011

    CAS  PubMed  Google Scholar 

  111. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD . Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease J Clin Invest 1996 98: 1107–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kojima T, Horiuchi T, Nishizaka H et al. Analysis of Fas ligand gene mutation in patients with systemic lupus erythematosus Arthritis Rheum 2000 43: 135–139

    CAS  PubMed  Google Scholar 

  113. Turner MW . Mannose-binding lectin: the pluripotent molecule of the innate immune system Immunol Today 1996 17: 532–540

    CAS  PubMed  Google Scholar 

  114. Nepomuceno RR, Henschen-Edman AH, Burgess WH, Tenner AJ . cDNA cloning and primary structure analysis of C1qRP, the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro Immunity 1997 6: 1119–1129

    Google Scholar 

  115. Matsushita M, Fujita T . Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease J Exp Med 1992 176: 1497–1502

    CAS  PubMed  Google Scholar 

  116. Thiel S, Vorup-Jensen T, Stover CM et al. A second serine protease associated with mannan-binding lectin that activates complement Nature 1997 386: 506–510

    CAS  PubMed  Google Scholar 

  117. Sumiya M, Super M, Tabona P, Arai T, Turner MW, Summerfield JA . Molecular basis of opsonic defect in immunodeficient children Lancet 1991 337: 1569–1570

    CAS  PubMed  Google Scholar 

  118. Lipscombe RJ, Sumiya M, Hill AVS et al. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene Hum Mol Genet 1992 1: 709–715

    CAS  PubMed  Google Scholar 

  119. Madsen HO, Garred P, Kurtzhals JA et al. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein Immunogenetics 1994 40: 37–40

    CAS  PubMed  Google Scholar 

  120. Madsen HO, Garred P, Thiel S et al. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein J Immunol 1995 155: 3013–3020

    CAS  PubMed  Google Scholar 

  121. Garred P, Madsen HO, Halberg P et al. Mannose-binding lectin polymorphisms and susceptibility to infection in systemic lupus erythematosus Arthritis Rheum 1999 42: 2145–2152

    CAS  PubMed  Google Scholar 

  122. Davies EJ, Teh LS, Ordi-Ros J et al. A dysfunctional allele of the mannose binding protein gene associates with systemic lupus erythematosus in a Spanish population J Rheumatol 1997 24: 485–488

    CAS  PubMed  Google Scholar 

  123. Sullivan KE, Wooten C, Goldman D, Petri M . Mannose-binding protein polymorphism in black patients with systemic lupus erythematosus Arthritis Rheum 1996 39: 2046–2051

    CAS  PubMed  Google Scholar 

  124. Ip WK, Chan SY, Lau CS, Lau YL . Association of systemic lupus erythematosus with promoter polymorphisms of the mannose-binding lectin gene Arthritis Rheum 1998 41: 1663–1668

    CAS  PubMed  Google Scholar 

  125. Theofilopoulos AN, Dixon FJ . Murine models of systemic lupus erythematosus Adv Immunol 1985 37: 269–390

    CAS  PubMed  Google Scholar 

  126. Rozzo SJ, Allard JD, Choubey D et al. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus Immunity 2001 14: 435–443

    Google Scholar 

  127. Mohan C, Alas E, Morel L, Yang P, Wakeland EK . Genetic dissection of SLE pathogenesis. Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes J Clin Invest 1998 101: 1362–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mohan C, Morel L, Yang P, Wakeland EK . Genetic dissection of systemic lupus erythematosus pathogenesis: Sle2 on murine chromosome 4 leads to B cell hyperactivity J Immunol 1997 159: 454–465

    CAS  PubMed  Google Scholar 

  129. Mohan C, Yu Y, Morel L, Yang P, Wakeland EK . Genetic dissection of SLE pathogenesis: Sle3on murine chromosome 7 impacts T cell activation, differentiation, and cell death J Immunol 1999 162: 6492–6502

    CAS  PubMed  Google Scholar 

  130. Morel L, Tian XH, Croker BP, Wakeland EK . Epistatic modifiers of autoimmunity in a murine model of lupus nephritis Immunity 1999 11: 131–139

    CAS  PubMed  Google Scholar 

  131. Morel L, Croker BP, Blenman KR et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains Proc Natl Acad Sci USA 2000 97: 6670–6675

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wakeland EK, Wandstrat AE, Liu K, Morel L . Genetic dissection of systemic lupus erythematosus Curr Opin Immunol 1999 11: 701–707

    CAS  PubMed  Google Scholar 

  133. Morel L, Blenman KR, Croker BP, Wakeland EK . The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes Proc Natl Acad Sci USA 2001 98: 1787–1792

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cohen PL, Eisenberg RA . Lpr and gld: single gene models of systemic autoimmunity and lymphoprolifitive disease Annu Rev Immunol 1991 9: 243–269

    CAS  PubMed  Google Scholar 

  135. Watson ML, Rao JK, Gilkeson GS et al. Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci J Exp Med 1992 176: 1645–1656

    CAS  PubMed  Google Scholar 

  136. Murphy ED, Roths JB . New inbred strains Mouse News Lett 1978 58: 51–52

    Google Scholar 

  137. Murphy ED, Roths JB . A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation Arthritis Rheum 1979 22: 1188–1194

    CAS  PubMed  Google Scholar 

  138. Moser KL, Gray-McGuire C, Kelly J et al. Confirmation of genetic linkage between human systemic lupus erythematosus and chromosome 1q41 Arthritis Rheum 1999 42: 1902–1907

    CAS  PubMed  Google Scholar 

  139. Tsao BP, Cantor RM, Grossman JM et al. PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus J Clin Invest 1999 103: 1135–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Delrieu O, Michel M, Frances C et al. Poly(ADP-ribose) polymerase alleles in French Caucasians are associated neither with lupus nor with primary antiphospholipid syndrome. GRAID Research Group. Group for Research on Auto-Immune Disorders Arthritis Rheum 1999 42: 2194–2197

    CAS  PubMed  Google Scholar 

  141. Criswell LA, Moser KL, Gaffney PM et al. PARP alleles and SLE: failure to confirm association with disease susceptibility J Clin Invest 2000 105: 1501–1502

    CAS  PubMed  Google Scholar 

  142. Graham RR, Langefeld CD, Gaffney PM et al. Genetic linkage and transmission disequilibrium of marker haplotypes at chromosome 1q41 in human systemic lupus erythematosus Arthritis Res 2001 3: 299–305

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tsao BP, Grossman JM, Arnett FC et al. Investigation of SLE-linked regions identified by genome scans: support for 1q24, 16q13, and 20p12 Arthritis Rheum 2000 43.) (Suppl.): 278

    Google Scholar 

  144. Magnusson V, Lindqvist AK, Castillejo-Lopez C et al. Fine mapping of the SLEB2 locus involved in susceptibility tosystemic lupus erythematosus Genomics 2000 70: 307–314

    CAS  PubMed  Google Scholar 

  145. Rao S, Olson JM, Moser KL et al. Linkage analysis of human systemic-lupus-erythematosus-related traits: a principal-component approach Arthritis Rheum 2001 44: 2807–2818

    CAS  PubMed  Google Scholar 

  146. Goldin LR, Chase GA, Wilson AF . Regional inference with averaged P values increases the power to detect linkage Genet Epidermiol 1999 17: 157–164

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J B Harley.

Additional information

This work was supported by grants from the National Institutes of Health (AR42460, AI24717, AR45231, AI31585, HG01577 and RR03655).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, J., Moser, K. & Harley, J. The genetics of systemic lupus erythematosus: putting the pieces together. Genes Immun 3 (Suppl 1), S71–S85 (2002). https://doi.org/10.1038/sj.gene.6363885

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363885

Keywords

This article is cited by

Search

Quick links