Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Balancing immunity and tolerance: genetic footprint of natural selection in the transcriptional regulatory region of HLA-G

Abstract

Human leukocyte antigen-G (HLA-G) has well-recognized immunosuppressive properties modulating the activity of many immune system cells, and polymorphisms observed at the HLA-G 5′ upstream regulatory region (5′URR) may influence gene transcriptional regulation. In this study, we characterized the sequence variation and haplotype structure of the HLA-G 5′URR in worldwide populations to investigate the evolutionary history of the HLA-G promoter and shed some light into the mechanisms that may underlie HLA-G expression control. A 1.4-kb region, encompassing the known HLA-G regulatory elements, was sequenced in three African populations from Senegal, Benin and Congo, and data were combined with those available in the literature, resulting in a total of 1411 individuals from 21 worldwide populations. High levels of nucleotide and haplotype diversities, excess of intermediate-frequency variants and reduced population differentiation were observed at this locus when compared with the background genomic variation. These features support a strong molecular signature of balancing selection at HLA-G 5′URR, probably as a result of the competing needs to maintain both a maternal–fetal immune tolerance and an efficient host immune response to invading pathogens during human evolution. An extended analysis of a 300-kb region surrounding HLA-G revealed that this region is not involved in a hitchhiking effect and may be the direct target of selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED . Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci USA 1997; 94: 11520–11525.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Le Gal FA, Riteau B, Sedlik C, Khalil-Daher I, Menier C, Dausset J et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol 1999; 11: 1351–1356.

    CAS  PubMed  Google Scholar 

  3. Ristich V, Liang S, Zhang W, Wu J, Horuzsko A . Tolerization of dendritic cells by HLA-G. Eur J Immunol 2005; 35: 1133–1142.

    CAS  PubMed  Google Scholar 

  4. Berger DS, Hogge WA, Barmada MM, Ferrell RE . Comprehensive analysis of HLA-G: implications for recurrent spontaneous abortion. Reprod Sci 2010; 17: 331–338.

    CAS  PubMed  Google Scholar 

  5. Naji A, Menier C, Morandi F, Agaugue S, Maki G, Ferretti E et al. Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses. J Immunol 2014; 192: 1536–1546.

    CAS  PubMed  Google Scholar 

  6. Larsen MH, Hviid TV . Human leukocyte antigen-G polymorphism in relation to expression, function, and disease. Hum Immunol 2009; 70: 1026–1034.

    CAS  PubMed  Google Scholar 

  7. Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P . Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci 2011; 68: 369–395.

    CAS  PubMed  Google Scholar 

  8. Gonzalez A, Rebmann V, LeMaoult J, Horn PA, Carosella ED, Alegre E . The immunosuppressive molecule HLA-G and its clinical implications. Crit Rev Clin Lab Sci 2012; 49: 63–84.

    CAS  PubMed  Google Scholar 

  9. Tan Z, Shon AM, Ober C . Evidence of balancing selection at the HLA-G promoter region. Hum Mol Genet 2005; 14: 3619–3628.

    CAS  PubMed  Google Scholar 

  10. Alvarez M, Piedade J, Balseiro S, Ribas G, Regateiro F . HLA-G 3’-UTR SNP and 14-bp deletion polymorphisms in Portuguese and Guinea-Bissau populations. Int J Immunogenet 2009; 36: 361–366.

    CAS  PubMed  Google Scholar 

  11. Castelli EC, Mendes-Junior CT, Deghaide NH, de Albuquerque RS, Muniz YC, Simoes RT et al. The genetic structure of 3’untranslated region of the HLA-G gene: polymorphisms and haplotypes. Genes Immun 2010; 11: 134–141.

    CAS  PubMed  Google Scholar 

  12. Castelli EC, Mendes-Junior CT, Veiga-Castelli LC, Roger M, Moreau P, Donadi EA . A comprehensive study of polymorphic sites along the HLA-G gene: implication for gene regulation and evolution. Mol Biol Evol 2011; 28: 3069–3086.

    CAS  PubMed  Google Scholar 

  13. Lucena-Silva N, Monteiro AR, de Albuquerque RS, Gomes RG, Mendes-Junior CT, Castelli EC et al. Haplotype frequencies based on eight polymorphic sites at the 3’ untranslated region of the HLA-G gene in individuals from two different geographical regions of Brazil. Tissue Antigens 2012; 79: 272–278.

    CAS  PubMed  Google Scholar 

  14. Sabbagh A, Luisi P, Castelli EC, Gineau L, Courtin D, Milet J et al. Worldwide genetic variation at the 3’ untranslated region of the HLA-G gene: balancing selection influencing genetic diversity. Genes Immun 2014; 15: 95–106.

    CAS  PubMed  Google Scholar 

  15. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 2007; 81: 829–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yie SM, Li LH, Xiao R, Librach CL . A single base-pair mutation in the 3’-untranslated region of HLA-G mRNA is associated with pre-eclampsia. Mol Hum Reprod 2008; 14: 649–653.

    CAS  PubMed  Google Scholar 

  17. Castelli EC, Moreau P, Oya e Chiromatzo A, Mendes-Junior CT, Veiga-Castelli LC, Yaghi L et al. In silico analysis of microRNAS targeting the HLA-G 3’ untranslated region alleles and haplotypes. Hum Immunol 2009; 70: 1020–1025.

    CAS  PubMed  Google Scholar 

  18. Ober C, Aldrich CL, Chervoneva I, Billstrand C, Rahimov F, Gray HL et al. Variation in the HLA-G promoter region influences miscarriage rates. Am J Hum Genet 2003; 72: 1425–1435.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Costa CH, Gelmini GF, Wowk PF, Mattar SB, Vargas RG, Roxo VM et al. HLA-G regulatory haplotypes and implantation outcome in couples who underwent assisted reproduction treatment. Hum Immunol 2012; 73: 891–897.

    CAS  PubMed  Google Scholar 

  20. Martinez-Laso J, Herraiz MA, Penaloza J, Barbolla ML, Jurado ML, Macedo J et al. Promoter sequences confirm the three different evolutionary lineages described for HLA-G. Hum Immunol 2013; 74: 383–388.

    CAS  PubMed  Google Scholar 

  21. Castelli EC, Ramalho J, Porto I, Lima TH, Felicio LP, Sabbagh A et al. Insights into HLA-G genetics provided by worldwide haplotype diversity. Front Immunol 2014; 5: 476.

    PubMed  PubMed Central  Google Scholar 

  22. Nicolae D, Cox NJ, Lester LA, Schneider D, Tan Z, Billstrand C et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet 2005; 76: 349–357.

    CAS  PubMed  Google Scholar 

  23. Doherty VL, Rush AN, Brennecke SP, Moses EK . The -56T HLA-G promoter polymorphism is not associated with pre-eclampsia/eclampsia in Australian and New Zealand women. Hypertens Pregnancy 2006; 25: 63–71.

    CAS  PubMed  Google Scholar 

  24. Ober C, Billstrand C, Kuldanek S, Tan Z . The miscarriage-associated HLA-G -725G allele influences transcription rates in JEG-3 cells. Hum Reprod 2006; 21: 1743–1748.

    CAS  PubMed  Google Scholar 

  25. Kroner A, Grimm A, Johannssen K, Maurer M, Wiendl H . The genetic influence of the nonclassical MHC molecule HLA-G on multiple sclerosis. Hum Immunol 2007; 68: 422–425.

    CAS  PubMed  Google Scholar 

  26. Kim SK, Hong MS, Shin MK, Uhm YK, Chung JH, Lee MH . Promoter polymorphisms of the HLA-G gene, but not the HLA-E and HLA-F genes, is associated with non-segmental vitiligo patients in the Korean population. Arch Dermatol Res 2011; 303: 679–684.

    CAS  PubMed  Google Scholar 

  27. Kim SK, Chung JH, Kim DH, Yun DH, Hong SJ, Lee KH . Lack of association between promoter polymorphisms of HLA-G gene and rheumatoid arthritis in Korean population. Rheumatol Int 2012; 32: 509–512.

    CAS  PubMed  Google Scholar 

  28. Misra MK, Prakash S, Kapoor R, Pandey SK, Sharma RK, Agrawal S . Association of HLA-G promoter and 14-bp insertion-deletion variants with acute allograft rejection and end-stage renal disease. Tissue Antigens 2013; 82: 317–326.

    CAS  PubMed  Google Scholar 

  29. Castelli EC, Veiga-Castelli LC, Yaghi L, Moreau P . Transcriptional and posttranscriptional regulations of the HLA-G gene. J Immunol Res 2014; 2014: 734068.

    PubMed  PubMed Central  Google Scholar 

  30. Schmidt CM, Ehlenfeldt RG, Athanasiou MC, Duvick LA, Heinrichs H, David CS et al. Extraembryonic expression of the human MHC class I gene HLA-G in transgenic mice. Evidence for a positive regulatory region located 1 kilobase 5’ to the start site of transcription. J Immunol 1993; 151: 2633–2645.

    CAS  PubMed  Google Scholar 

  31. Moreau P, Paul P, Gourand L, Prost S, Dausset J, Carosella E et al. HLA-G gene transcriptional regulation in trophoblasts and blood cells: differential binding of nuclear factors to a regulatory element located 1.1 kb from exon 1. Hum Immunol 1997; 52: 41–46.

    CAS  PubMed  Google Scholar 

  32. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56–65.

    PubMed  Google Scholar 

  33. Stephens M, Donnelly P . A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wright S . The genetical structure of populations. Ann Eugen 1951; 15: 323–354.

    CAS  PubMed  Google Scholar 

  35. Akey JM, Zhang G, Zhang K, Jin L, Shriver MD . Interrogating a high-density SNP map for signatures of natural selection. Genome Res 2002; 12: 1805–1814.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Elhaik E . Empirical distributions of F(ST) from large-scale human polymorphism data. PLoS ONE 2012; 7: e49837.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mu XJ, Lu ZJ, Kong Y, Lam HY, Gerstein MB . Analysis of genomic variation in non-coding elements using population-scale sequencing data from the 1000 Genomes Project. Nucleic Acids Res 2011; 39: 7058–7076.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B et al. Great ape genetic diversity and population history. Nature 2013; 499: 471–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Solier C, Mallet V, Lenfant F, Bertrand A, Huchenq A, Le Bouteiller P . HLA-G unique promoter region: functional implications. Immunogenetics 2001; 53: 617–625.

    CAS  PubMed  Google Scholar 

  40. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R . A class I antigen, HLA-G, expressed in human trophoblasts. Science 1990; 248: 220–223.

    CAS  PubMed  Google Scholar 

  41. Crisa L, McMaster MT, Ishii JK, Fisher SJ, Salomon DR . Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. J Exp Med 1997; 186: 289–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Moreau P, Flajollet S, Carosella ED . Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med 2009; 13: 2973–2989.

    PubMed  PubMed Central  Google Scholar 

  43. Gobin SJ, Peijnenburg A, Keijsers V, van den Elsen PJ . Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity 1997; 6: 601–611.

    CAS  PubMed  Google Scholar 

  44. Gobin SJ, Keijsers V, van Zutphen M, van den Elsen PJ . The role of enhancer A in the locus-specific transactivation of classical and nonclassical HLA class I genes by nuclear factor kappa B. J Immunol 1998; 161: 2276–2283.

    CAS  PubMed  Google Scholar 

  45. Gobin SJ, van Zutphen M, Woltman AM, van den Elsen PJ . Transactivation of classical and nonclassical HLA class I genes through the IFN-stimulated response element. J Immunol 1999; 163: 1428–1434.

    CAS  PubMed  Google Scholar 

  46. Ibrahim EC, Morange M, Dausset J, Carosella ED, Paul P . Heat shock and arsenite induce expression of the nonclassical class I histocompatibility HLA-G gene in tumor cell lines. Cell Stress Chaperones 2000; 5: 207–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lefebvre S, Berrih-Aknin S, Adrian F, Moreau P, Poea S, Gourand L et al. A specific interferon (IFN)-stimulated response element of the distal HLA-G promoter binds IFN-regulatory factor 1 and mediates enhancement of this nonclassical class I gene by IFN-beta. J Biol Chem 2001; 276: 6133–6139.

    CAS  PubMed  Google Scholar 

  48. Schmidt CM, Chen HL, Chiu I, Ehlenfeldt RG, Hunt JS, Orr HT . Temporal and spatial expression of HLA-G messenger RNA in extraembryonic tissues of transgenic mice. J Immunol 1995; 155: 619–629.

    CAS  PubMed  Google Scholar 

  49. Campbell MC, Tishkoff SA . African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 2008; 9: 403–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bamshad M, Wooding SP . Signatures of natural selection in the human genome. Nat Rev Genet 2003; 4: 99–111.

    CAS  PubMed  Google Scholar 

  51. Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG . Recent and ongoing selection in the human genome. Nat Rev Genet 2007; 8: 857–868.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Single RM, Martin MP, Gao X, Meyer D, Yeager M, Kidd JR et al. Global diversity and evidence for coevolution of KIR and HLA. Nat Genet 2007; 39: 1114–1119.

    CAS  PubMed  Google Scholar 

  53. Li Q, Peterson KR, Fang X, Stamatoyannopoulos G . Locus control regions. Blood 2002; 100: 3077–3086.

    CAS  PubMed  Google Scholar 

  54. Deschaseaux F, Gaillard J, Langonne A, Chauveau C, Naji A, Bouacida A et al. Regulation and function of immunosuppressive molecule human leukocyte antigen G5 in human bone tissue. Faseb J 2013; 27: 2977–2987.

    CAS  PubMed  Google Scholar 

  55. Martelli-Palomino G, Pancotto JA, Muniz YC, Mendes-Junior CT, Castelli EC, Massaro JD et al. Polymorphic sites at the 3’ untranslated region of the HLA-G gene are associated with differential hla-g soluble levels in the Brazilian and French population. PLoS ONE 2013; 8: e71742.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hiby SE, King A, Sharkey A, Loke YW . Molecular studies of trophoblast HLA-G: polymorphism, isoforms, imprinting and expression in preimplantation embryo. Tissue Antigens 1999; 53: 1–13.

    CAS  PubMed  Google Scholar 

  57. O’Brien M, McCarthy T, Jenkins D, Paul P, Dausset J, Carosella ED et al. Altered HLA-G transcription in pre-eclampsia is associated with allele specific inheritance: possible role of the HLA-G gene in susceptibility to the disease. Cell Mol Life Sci 2001; 58: 1943–1949.

    PubMed  Google Scholar 

  58. Rebmann V, van der Ven K, Passler M, Pfeiffer K, Krebs D, Grosse-Wilde H . Association of soluble HLA-G plasma levels with HLA-G alleles. Tissue Antigens 2001; 57: 15–21.

    CAS  PubMed  Google Scholar 

  59. Hviid TV, Hylenius S, Rorbye C, Nielsen LG . HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics 2003; 55: 63–79.

    CAS  PubMed  Google Scholar 

  60. Rousseau P, Le Discorde M, Mouillot G, Marcou C, Carosella ED, Moreau P . The 14 bp deletion-insertion polymorphism in the 3’ UT region of the HLA-G gene influences HLA-G mRNA stability. Hum Immunol 2003; 64: 1005–1010.

    CAS  PubMed  Google Scholar 

  61. Svendsen SG, Hantash BM, Zhao L, Faber C, Bzorek M, Nissen MH et al. The expression and functional activity of membrane-bound human leukocyte antigen-G1 are influenced by the 3’-untranslated region. Hum Immunol 2013; 74: 818–827.

    CAS  PubMed  Google Scholar 

  62. Castelli EC, Mendes-Junior CT, Donadi EA . HLA-G alleles and HLA-G 14 bp polymorphisms in a Brazilian population. Tissue Antigens 2007; 70: 62–68.

    CAS  PubMed  Google Scholar 

  63. Mendes-Junior CT, Castelli EC, Meyer D, Simoes AL, Donadi EA . Genetic diversity of the HLA-G coding region in Amerindian populations from the Brazilian Amazon: a possible role of natural selection. Genes Immun 2013; 14: 518–526.

    CAS  PubMed  Google Scholar 

  64. Santos KE, Lima TH, Felicio LP, Massaro JDPalomino GM, Silva AC et al. Insights on the HLA-G evolutionary history provided by a nearby Alu insertion. Mol Biol Evol 2013; 30: 2423–2424.

    CAS  PubMed  Google Scholar 

  65. Julie DC, Buhler S, Frassati C, Basire A, Galicher V, Baier C et al. Linkage disequilibrium between HLA-G*0104 and HLA-E*0103 alleles in Tswa Pygmies. Tissue Antigens 2011; 77: 193–200.

    CAS  PubMed  Google Scholar 

  66. Courtin D, Milet J, Jamonneau V, Yeminanga CS, Kumeso VK, Bilengue CM et al. Association between human African trypanosomiasis and the IL6 gene in a Congolese population. Infect Genet Evol 2007; 7: 60–68.

    CAS  PubMed  Google Scholar 

  67. Milet J, Nuel G, Watier L, Courtin D, Slaoui Y, Senghor P et al. Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population. PLoS ONE 2010; 5: e11616.

    PubMed  PubMed Central  Google Scholar 

  68. Le Port A, Cottrell G, Martin-Prevel Y, Migot-Nabias F, Cot M, Garcia A . First malaria infections in a cohort of infants in Benin: biological, environmental and genetic determinants. Description of the study site, population methods and preliminary results. BMJ Open 2012; 2: e000342.

    PubMed  PubMed Central  Google Scholar 

  69. Cervera I, Herraiz MA, Penaloza J, Barbolla ML, Jurado ML, Macedo J et al. Human leukocyte antigen-G allele polymorphisms have evolved following three different evolutionary lineages based on intron sequences. Hum Immunol 2010; 71: 1109–1115.

    CAS  PubMed  Google Scholar 

  70. Lewontin RC . The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 1964; 49: 49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    CAS  PubMed  Google Scholar 

  72. Excoffier L, Laval G, Schneider S . Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 2007; 1: 47–50.

    PubMed  PubMed Central  Google Scholar 

  73. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    CAS  PubMed  Google Scholar 

  74. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bandelt HJ, Forster P, Rohl A . Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999; 16: 37–48.

    CAS  PubMed  Google Scholar 

  76. Excoffier L, Smouse PE, Quattro JM . Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992; 131: 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002; 12: 1611–1618.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kelley JL, Madeoy J, Calhoun JC, Swanson W, Akey JM . Genomic signatures of positive selection in humans and the limits of outlier approaches. Genome Res 2006; 16: 980–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Beaumont MA, Nichols RA . Evaluating loci for use in the genetic analysis of population structure. Proc R Soc 1996; 263: 1619–1626.

    Google Scholar 

  81. Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L . Natural selection has driven population differentiation in modern humans. Nat Genet 2008; 40: 340–345.

    CAS  PubMed  Google Scholar 

  82. Tajima F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fu YX, Li WH . Statistical tests of neutrality of mutations. Genetics 1993; 133: 693–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Librado P, Rozas J . DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25: 1451–1452.

    CAS  PubMed  Google Scholar 

  85. Woolfe A, Goode DK, Cooke J, Callaway H, Smith S, Snell P et al. CONDOR: a database resource of developmentally associated conserved non-coding elements. BMC. Dev Biol 2007; 7: 100.

    Google Scholar 

  86. Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 2002; 419: 832–837.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the binational collaborative research program CAPES-COFECUB (grant #653/09) and by the Spanish National Institute for Bioinformatics (www.inab.org). LG was supported by grants from Région Ile-de-France. PL was supported by a PhD fellowship from ‘Acción Estratrégica de Salud, en el Marco del Plan Nacional de Investigacio'n Científica, Desarrollo e Innovación Tecnológica 2008–2011’ from Instituto de Salud Carlos III. BP was supported by a PhD fellowship from the doctoral program in Public Health from Paris Sud University. ECC was supported by the Brazilian Council for Scientific and Technological Development—CNPq (grant # 304471/2013-5). EAD was supported by the Brazilian Council for Scientific and Technological Development—CNPq Project (grant # 476036/2013-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sabbagh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gineau, L., Luisi, P., Castelli, E. et al. Balancing immunity and tolerance: genetic footprint of natural selection in the transcriptional regulatory region of HLA-G. Genes Immun 16, 57–70 (2015). https://doi.org/10.1038/gene.2014.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.63

This article is cited by

Search

Quick links